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1

Introduction
Xmath® is a mathematical analysis, visualization, and scripting package that is 
one of the five main products of the MATRIXX

® product family. Complementing 
SystemBuild™, another member of the MATRIXX product family, Xmath serves 
not only as an analytical tool, but also as a working environment and 
visualization tool for simulation data. Xmath and SystemBuild run concurrently, 
which allows you to simultaneously edit SystemBuild models, perform Xmath 
analysis or SystemBuild simulations, and display 2D and 3D graphics in 
presentation quality.

MathScript, the Xmath programming language, provides unique object-oriented 
capabilities that facilitate design analysis. Xmath also offers an interactive 
debugger, a programmable graphical user interface (GUI) layer, and an extensive 
library of mathematical, system modeling, and analysis functions.

This chapter begins with an outline of the Xmath User’s Guide, and some use notes. 
It continues with topics for helping  you to get started in Xmath. These basic tasks 
are divided into the following topics: 

Environment Variables

Starting and Stopping Xmath

Licensing

Using Xmath Windows

Xmath Commands Window

Help Window
21



MATRIXX 7.0
Xmath User’s Guide
To complete the exercises in this chapter, Xmath must be properly installed 
according to the System Administrator’s Guide for your operating system and 
platform. For details about X Windows and the Motif window manager, see 
Appendix A. X Windows and Motif. For more information about Windows 
operating systems, see the appropriate System Administrator’s Guide, Windows 
Version.

1.1  Using This Manual

This manual discusses Xmath structure and concepts. Chapter 2 is a tutorial. 
Chapters 3, 4, and 5 cover basic features for general Xmath use. Chapters 6 
through 9 describe more advanced aspects of Xmath’s structure and its 
programming abilities. Appendicies A–D contain material that is only of interest 
to specific categories of users. A glossary, which includes some general terms as 
well as Xmath terms, follows the appendices.

1.1.1  Document Organization

This manual includes the following chapters and appendices:

■ 1. Introduction starts with a outline of the Xmath User’s Guide. It continues with 
a discussion of useful environmental variables and licensing issues. It also 
tells how to start and exit Xmath, and introduces the Xmath Commands 
window and the Xmath Help window.

■ 2. JumpStart: A Tutorial covers Xmath’s basic and intermediate capabilities and 
introduces some of Xmath’s more advanced features and concepts. 

■ 3. MathScript Basics introduces Xmath’s object-oriented language, MathScript, 
and data management in Xmath.

■ 4. Graphics details the plot function, providing a complete listing of all 
keywords and many examples. This chapter also describes how to change a 
plot’s appearance interactively.

■ 5. Data Objects and Operators discusses the nature and definition of each of 
Xmath’s object classes. It gives examples of how to build and use each object.
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■ 6. MathScript Programming discusses how to create different types of 
MathScript files, MathScript Functions (MSFs), and MathScript Commands 
(MSCs). This chapter also includes brief descriptions of Xmath-supplied 
functions and commands designed to help you program in MathScript.

■ 7. MathScript Objects describes how to define MathScript objects.

■ 8. External Program Interface explains the LNX and User-Callable Interface 
(UCI) features. The LNX facility makes it possible to link C, C++, or 
FORTRAN subroutines into Xmath. The UCI allows your external programs 
to use Xmath for graphics and computation.

■ 9. Graphical User Interface describes Xmath’s programmable graphical user 
interface (PGUI).

■ A. X Windows and Motif is included for users who are unfamiliar with the 
workstation environment but want to start using Xmath quickly. This 
appendix provides a summary of the X and Motif actions used most 
frequently in Xmath.

■ B. Xmath HP-GL Driver discusses Xmath’s HP-GL driver and the devices it 
supports.

■ C. Xmath for MATLAB Users is designed to help MATLAB users transition to 
Xmath. Differences in syntax, behavior, and functionality are discussed.

■ D. Xmath to Mathematica Interface describes how to set up and use the Xmath 
to Mathematica Interface.

1.1.2  Commonly-Used Nomenclature

This manual uses the following general nomenclature:

■ Matrix variables are generally denoted with capital letters; vectors are 
represented in lowercase.

■  is used to denote a transfer function of a system where s is the Laplace 
variable.  is used when both continuous and discrete systems are 
allowed.

■  is used to denote the frequency response, over some range of 
frequencies of a system where s is the Laplace variable.  is used to 
indicate that the system can be continuous or discrete.

■ A single apostrophe following a matrix variable, for example, , denotes the 
transpose of that variable. An asterisk following a matrix variable (for 

G s( )
G q( )

H s( )
H q( )

x'
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example, A*) indicates the complex conjugate, or Hermitian, transpose of that 
variable. 

1.1.3  Conventions

This publication makes use of the following types of conventions: font, format, 
symbol, mouse, and note. These conventions are detailed in Chapter 2 of the 
MATRIXX Getting Started Guide.

1.1.4  Related Publications

For a complete list of MATRIXX publications, see Chapter 2 of the MATRIXX 
Getting Started Guide. The following documents are particularly useful for topics 
covered in this manual:

■ MATRIXX Getting Started Guide

■ Xmath User’s Guide

■ Control Design Module

■ Interactive Control Design Module

■ Interactive System Identification Module, Part 1 

■ Interactive System Identification Module, Part 2 

■ Model Reduction Module

■ Optimization Module

■ Robust Control Module

■ Xµ Module

1.1.5  Online Help

Xmath function reference information is available in the MATRIXX online Help. 
The online Help includes all Xmath functions. Each topic explains a function’s 
inputs, outputs, and keywords in detail. See Chapter 2 of the MATRIXX Getting 
Started Guide for complete instructions on using the Help feature.
24



1

1
Introduction
1.2  Environment Variables

This section defines several important environment variables. 

Xmath defines the ISIHOME and XMATH environment variables. It also 
recognizes the other environment variables discussed below. You can define them 
in your .cshrc file (UNIX), in your autoexec.bat file (Windows), or in your system 
properties (environment) (Windows NT). Alternatively, you can define them in 
each session in an Terminal or Command Prompt window. 

1.2.1  ISIHOME

ISIHOME is an environment variable representing the installation directory for 
MATRIXX. This variable is used in pathnames.

1.2.2  XMATH

XMATH is an environment variable representing the directory in which Xmath is 
installed. XMATH is used in pathnames.

1.2.3  XMATH_STARTUP

XMATH_STARTUP is an environment variable you can use to specify a directory 
in which the startup MathScript file (startup.ms) is located. When you launch 
Xmath, the startup MathScript file (startup.ms) in the specified directory is 
executed.

NOTE:  The following conventions are used in this manual when referring to 
environment variables: 

■ When an environment variable appears in a pathname with its appropriate 
system dependent environment variable designator ($NAME for UNIX and 
%NAME% for Windows), then you can use the environment variable as 
shown. 

■ When NAME  appears without the environment variable designator, then you 
must substitute the pathname (value of the variable) in the command.
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1.2.4  XMATH_PRINT

XMATH_PRINT is an environment variable that lets you set up a default printer. 
When you run Xmath and use the HARDCOPY command, Xmath uses the value 
of XMATH_PRINT to send the graphics to the printer.

To define XMATH_PRINT for a SunOS system using the print command lpr and a 
printer named hp0, define XMATH_PRINT:

setenv XMATH_PRINT "lpr -Php0"

If you are on an SGI or HP system, set XMATH_PRINT with an entry similar to 
the following: 

setenv XMATH_PRINT "lp -dhp0 -c"

If you are on a Windows operating system, set XMATH_PRINT with an entry 
similar to the following: 

set XMATH_PRINT=ISIHOME\xmath\bin\xmprint your_printer

where your_printer is the name of your selected printer.

You can place this command in the autoexec.bat file in the root directory of your C 
drive. On Windows NT, you have the alternative of using the System Properties, 
Environment tab under the Control Panel to specify the environment variable.

1.2.5  PRINTER

PRINTER is an environment variable that lets you specify a default printer (if 
XMATH_PRINT) is not defined.

For example, to define PRINTER on a SunOS system, for a printer named hp0, 
define the PRINTER environment variable in your .cshrc file with the following:

setenv PRINTER "hp0"

The next time you run Xmath and use the HARDCOPY command, Xmath will use 
the value of PRINTER to send the graphics to the printer.

NOTE:  If you specify the XMATH_PRINT environment variable, you do not need 
to set the PRINTER environment variable. (Xmath ignores it.)
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1.3  Starting and Stopping Xmath

This section covers starting and stopping Xmath, as well as terminating Xmath 
(abnormally) and quitting and restarting Xmath at the same point in your process. 
Major topics include:

■ Starting Xmath

■ Interrupting or Terminating Xmath

■ Exiting Xmath

■ Stopping and Restarting Xmath

1.3.1  Starting Xmath

Starting Xmath is a little different on UNIX and Windows machines, and the 
options available are also different. Therefore, we have included sections for each 
operating system.

Starting Xmath on UNIX Systems

You can start Xmath from any directory in any Terminal window, either in the 
foreground or the background.

Starting Xmath Locally

To start Xmath:

1. Bring up a Terminal window.

A Terminal window allows you to input at the operating system prompt.

NOTE:  Wind River recommends the XMATH_PRINT environment variable 
because it allows for platform-specific parameters. PRINTER may fail to work on 
some systems.
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2. Enter the following command:

% xmath

Unless all licenses are in use (see 1.4, p.32), the Xmath Commands window 
appears after a few seconds.

Internal messages and warnings from Xmath may be written to the Terminal 
window.

Starting Xmath on a Remote X Host

If you want to run Xmath on a remote UNIX host, you can start it from your local 
machine or from the remote host itself.

To start Xmath from your local computer, type:

% xmath -host remoteHostName

The remote host must accept a remote shell (rsh). Be aware that when the 
operating system stores the name of the current working directory, the name 
may not be equivalent to that of the same directory on the remote host. (For 
example, /home/user on the local machine versus /net/machine/home/user on 
the remote machine.) When there is no verbatim match, Xmath will start in 
your home directory on the remote machine. 

To confirm your location, go to the Xmath Commands window command area 
and type show directory. If necessary, use set directory to change the working 
directory from within Xmath.

To start Xmath from the remote host, type:

% xmath -d localHostName:0.0

This command displays the Xmath session on your local machine; you need 
to make sure your local machine accepts the display from a remote host. 
Consult the documentation on the UNIX operating system command xhost.

Command-Line Options Available on UNIX

Table 1-1 contains a partial list of options; some options might not be available on 
your platform.
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To get help on the xmath command in a Terminal window, type:

xmath -h
or
xmath -help

Starting Xmath on Windows Systems

To start Xmath on a PC, use one of the following methods:

■ Select Start→Programs→MATRIXx xx.x→Xmath

■ Enter the following command from the Command Prompt window:

ISIHOME\bin\xmath

where ISIHOME represents the installation directory for MATRIXX.

Table 1-2 contains a partial list of options; some options might not be 
available on your platform.

Table 1-1 Commonly Used Startup Options for UNIX 

Switch Action

-tty Start the tty (non-windowing) version. This version is 
suitable for command-line calculations. It can also be used 
to submit a list of instructions in batch mode (see 
3.9 MathScript Batch Files). The tty version has no online 
Help or graphics capabilities.

-call name args Runs a user-callable interface (UCI) executable, where name 
is the image name and args can be any command line 
arguments required by the UCI.

-clean If a UCI has terminated abnormally you can run Xmath 
with this switch to clean up orphaned processes. No other 
switches are accepted when -clean is specified.
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Internal messages and warnings from Xmath may be written to the Command 
Prompt window. 

To get help on the xmath command in the Command Prompt window, type:

ISIHOME\bin\xmath -h
 or
ISIHOME\bin\xmath -help

where you provide the path for the root installation directory of MATRIXX 
(ISIHOME).

1.3.2  Interrupting or Terminating Xmath

To interrupt interactive execution of an Xmath function or command, press Ctrl-C 
(on UNIX systems) or Ctrl-Break (on Windows systems) from any Xmath window. 

On UNIX systems, if either the windowing version or the tty version is not 
responding, terminate your Xmath session by pressing Ctrl-\ (hold down the 
Control key and press the backslash key [\]). This key sequence terminates Xmath 
properly in unusual circumstances. 

1.3.3  Exiting Xmath

From a windowing version of Xmath, use any one of the following methods to 
exit Xmath:

Table 1-2 Commonly Used Startup Options for Windows 

Switch Action

-call name args Runs a user-callable interface (UCI) executable, where name is 
the image name and args can be any command line arguments 
required by the UCI.

-clean If a UCI has terminated abnormally you can run Xmath with 
this switch to clean up orphaned processes. No other switches 
are accepted when -clean is specified.

NOTE:  Intrinsic commands (for example, save or load; see 3.5 Using Predefined 
Functions and Commands) are noninterruptible. The same is true for window, 
dialog, or plot creation.
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■ Type quit in the Xmath Commands window command area (the only part of the 
Xmath Commands window that accepts input). 

■ Choose File→Quit from the menu bar.

■ With the cursor over the Xmath Commands window, press Ctrl-q. 

■ On UNIX systems, select Close from the X Windows Default Menu in the Xmath 
Commands window.

■ On Windows systems, click the X (Close) button in the upper right corner of 
the Xmath Commands window, or click the Xmath icon in the upper left corner 
of the Xmath Commands window and select Close from the system menu, or 
use its keyboard equivalent of ALT F4. 

In all cases above, the Quit_popup dialog may appear.

You are given the opportunity to save before exiting. Selecting Save here saves all 
current variables to a file named save.xmd in the current working directory. The 
session terminates after the file is saved.

If you are using the tty version, type quit. You may see the following warning:

Modified variables that have not been saved exist; quit anyway? (y/n)

Type y (yes) or n (no) as desired. For more information, see 3.7 Saving and Loading 
Data. 

1.3.4  Stopping and Restarting Xmath

You can quit Xmath at any time. To resume at the same point, type save in the 
Xmath Commands window command area before quitting, or select Save in the Quit 
dialog. This saves all existing data to a file called save.xmd in the current working 
directory.

Figure 1-1 Quit Confirmation Dialog
31



MATRIXX 7.0
Xmath User’s Guide
To resume a session:

1. Restart Xmath from the same directory

2. Type load in the command area.

The default save file save.xmd is loaded.

1.4  Licensing

When Xmath starts, it checks out the Xmath Core license. The license for each 
module is checked out when that module is started; for example, the Control 
Design Module is checked out when that module is started. If your site has a 
floating license or counted node-locked license, you may be unable to check out a 
particular module.

If a Core license is available, the Xmath Commands window appears after a few 
seconds (see Figure 1-2, p.36 for the UNIX version). 

To get license information for your current version:

■ Select Help→On Version from the Help menu on any Xmath window.

A pop-up appears that tells you the version, date, and platform.

■ In the Xmath Commands window command area, type:

licenseinfo

A list of modules for which your site is licensed and their expiration dates 
appear in the log area.

For additional information about your Xmath license, see the System 
Administrator’s Guide for your operating system.

NOTE:  The Save command overwrites any previous save.xmd file in the current 
working directory.
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1.5  Using Xmath Windows

The major Xmath windows are listed in the table below, along with sections in 
which you can find information about them. You get to these windows through 
the Windows menu on each of the other windows.

This section contains general information that applies to all Xmath windows.

1.5.1  Mouse Conventions

This document assumes you have a 2- or 3-button mouse. From left to right, the 
buttons are referred to as MB1, MB2, and MB3. All instructions assume MB1 
unless otherwise noted. Table 1-4 lists common mouse instructions.

The following mouse-click combinations are useful for selecting text:

■ To select a word, point anywhere within the desired word and double–click. 

■ To select an entire line, point anywhere on the line and triple-click. 

Table 1-3 Major Xmath Windows 

Xmath Window Section

Commands 1.6

Graphics 4.4

Variables 3.2.5

Palette 4.4.4

Debugger (UNIX only) 2.6.2

Table 1-4 Common Mouse Instructions 

Instruction Action

click   Press then quickly release MB1.   

double-click   Rapidly click MB1 twice. 

drag   Hold down MB1 while moving the mouse; release the 
button when the desired result is obtained. 
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■ To select all text in an Xmath window area, move the cursor into the area and 
quadruple-click. 

1.5.2  Scroll Bars

Most Xmath windows have horizontal and vertical scroll bars so you can look at 
data that extends beyond your window border. As you can see in Figure 1-2, p.36, 
scroll bars have a small arrow on each end and a center area with a rectangular 
slider. 

The size of the slider depends on the amount of data out of view. In Figure 1-2, the 
horizontal slider fills the whole area because all data is visible. The slider becomes 
smaller as data accumulates. To move the slider, place the mouse pointer over the 
slide bar and use MB1 or MB2 to drag in the desired direction. If you click MB1 or 
MB2 in the scroll bar and off the slider itself, the slider moves toward the point 
you clicked.

1.5.3  Resizing Xmath Windows

Most Xmath windows are divided into several areas. If you make a window 
shorter, you may notice that some areas get too small to be useful, or even seem to 
disappear. When this happens, vertically resize these subwindows.

On the right side of a window on UNIX systems, you can see a small square 
straddling the border between two areas. (See Figure 1-2 for an example.) This is 
called a grip or a sash. When you place the pointer over it, the cursor changes to a 
cross-hairs symbol ( ). Drag the grip vertically in the direction you want the area 
to grow or shrink. Experiment with a combination of resizing the frame and 
resizing the areas.

On Windows versions, you can resize the windows using standard windows 
techniques.

1.5.4  Menus

The menu bar features pulldown menus that appear on most Xmath windows, 
although not all menus are active in all windows. You can open menus by clicking 
on the menu name or dragging down from the menu name.
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1.5.5  Meta Key

You need to know where the equivalent of the Meta key is on your keyboard if you 
plan to use Xmath’s accelerators. Whenever the documentation or one of the 
menus refers to Meta, you will need to press the key appropriate to your machine, 
as shown in Table 1-5.

1.6  Xmath Commands Window

The Xmath Commands window appears when you start Xmath (see Figure 1-2). 
This is your primary interface to Xmath. On UNIX systems, the Xmath Commands 
window contains three primary areas: the log area, the command area, and the 
message area. Windows systems have only two primary areas: the log area and 
the command area; the information that goes to the message area in UNIX goes to 
the log area on Windows systems.

Table 1-5 Meta Key 

Platform Key or Key Sequence

Sun Key with a diamond symbol (on either side of the space bar)

HP Extend/Char key (to the left of Shift)

IBM Alt

Windows Alt

SGI Alt
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You can interact with Xmath with both keyboard and mouse. While the keyboard 
is used for input, mouse position dictates the active input area; the mouse is also 
used for menu selection, text manipulation, and for displaying shortcut menus 
(right-click). (See 1.5.1, p.33 for mouse conventions.)

Figure 1-2 Xmath Commands Window (UNIX view)

X Windows

Type here

Default 
Menu

Menu Bar

Log Area

Scroll Bars

Command Area
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Grip
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1.6.1  Menus

The pulldown menus shown in Table 1-6 are active in the Xmath Commands 
window.

1.6.2  Log Area

The log area keeps a record of your interactions with Xmath. Both inputs and 
outputs are displayed in the log area. Certain actions in the user interface also 
cause Xmath to write to this area. 

To control the number of lines written to the log area, type

set logarea N

where N is the number of lines; N is also limited by the buffer size, which is 
machine dependent. Using this command truncates the current contents to that 
number of lines.

To set the lines to the maximum, type

set logarea max

This limit is dependent upon hardware and the operating system resources 
available.

To turn writing to the log area off:

set logarea off

Current contents of the log area are discarded. While logging is turned off, the 
data is not being buffered, and it is lost. When you are running batch and 

Table 1-6 Xmath Menus 

Menu Description

File Allows you to execute files, set partitions and directories, load files, save all 
variables, and exit Xmath.

Edit Allows you to clear the log area, message area, and command area, as well 
as send a command and insert a new line in the command area.

Options Allows you to set the output display precision.

Windows Quickly finds other Xmath windows and brings them to the foreground.

Help Invokes the online Help and provides version information.
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simulation jobs in SystemBuild, setting logging off speeds up their execution 
slightly.

To turn writing to the log area on:

set logarea on

All subsequent log data is displayed up to the limit; the limit is what you set 
previously or the default (maximum).

The command

show logarea

displays both the number of lines (or ALL) and the state of logging: On or Off.

To erase the log area, select Edit→Clear Log Area, or type

erase {logarea}

This action is not reversible, although you still have access to command recall to 
retrieve previous entries.

If a file is executed, the file contents are not written to the log area unless set echo 
on is specified (the default is off). 

1.6.3  Command Area

The command area is the only part of the Xmath Commands window (or any of the 
major Xmath windows) that accepts text input, so you can focus anywhere on the 
window and type. (If you are not familiar with the term focus, see A.2.2 Mouse 
Focus and the Pointer, p.350.)

Pressing Return or Enter causes Xmath to execute everything in the command area.

Specifying Directory Pathnames and Filenames

Within the command area, you often need to specify directory pathnames and 
filenames. To do so, you must use valid names. In general, Xmath does not 
recognize directory pathnames and filenames that contain spaces. Although such 
names are valid in Windows operating systems, Xmath does not recognize them 
from the command line; however, if you can select the directory and/or filename 
from a Browser or File Selection dialog, Xmath does accept them.
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Scripts, saving and loading data, printing a file, and changing a directory or path 
can each be accomplished via a file selection dialog. On UNIX platforms, Xmath 
uses the Motif file-selection dialog for interactive directory and file specification. 

Figure 1-3 shows a typical file selection dialog on UNIX. Most dialogs have the 
same fields, but some actions may not require all fields. 

If you know the full pathname of the directory or file you want, type it in the 
Selection field at the bottom, and then press Return or click OK. 

Entering Multiple Lines of Information

Entering multiple lines of text works differently on UNIX and Windows systems. 
See the following sections for examples.

Figure 1-3 Save Dialog (UNIX version)

NOTE:  All of the file interactions described above can also be accomplished from 
the command line, provided that the directory pathnames and filenames do not 
contain spaces, which are not generally recognized in the Xmath command area.
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On UNIX Systems

To enter multiple lines of text, press the Line Feed key or Shift-Return to start a new 
line. When you are finished typing, press Return to send all the lines to Xmath. 
Whenever the documentation refers to linefeed, you need to press the key(s) 
appropriate to your machine, as shown in Table 1-7.

You can achieve the same result by selecting Edit→Insert New Line from the menu 
bar. The accelerator for your machine appears to the right of the Insert New Line 
menu item.

On Windows Systems

To send a set of multiple lines on Windows:

1. Enter the multiline mode by pressing Shift-Enter.

 You can press Shift-Enter before or after entering the first line.

2. Enter your lines of text, pressing Enter after each.

3. Leave the multiline mode by pressing Shift-Enter.

4. Send all lines to Xmath by pressing Enter.

The Edit menu provides the Send Command that you can use instead of the Enter 
key.

Editing Text by Selecting, Copying, and Pasting

The command area is in insert mode. You can use mouse clicks or keyboard 
sequences to move the cursor within a line of text. 

Table 1-7 Linefeed Key 

Platform Key or Key Sequence

Sun Line Feed or Shift-Return

HP Insert Line

IBM Shift-Return

SGI Shift-Return
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Your operating system’s standard selection, copy, and paste methods are all valid.

The following selection sequences are defined: 

■ To select a character (forward or back), hold down the Shift key and press the 
right or left arrow key (command area only for UNIX).

■ To select a word, point anywhere in the word and double-click.

■ To select a line, point anywhere on the line and triple-click. 

■ To select all text in the window area, click four times (UNIX only).

You can paste text from any Xmath window or other ASCII source into the Xmath 
command area.

In UNIX, you can select a previous command from the log area, paste it into the 
command area, and re-execute it. The following copy and paste method is 
standard, although it may vary slightly with different window managers:

1. Point to the desired text and drag (holding down MB1) until everything you 
want appears in reverse video (is highlighted). Avoid highlighting extra 
characters.

2. Point to the destination and click MB2. 

Key Bindings Used in Editing Text

Key strokes help you perform editing functions for Xmath. Key bindings vary 
somewhat depending upon your type of operating system. You can change the 
key bindings for UNIX; for Windows, you cannot.

UNIX Default Bindings

The UNIX default bindings are emacs-style, as shown in Table 1-8. On UNIX 
systems keyboard types vary, so the default mappings for your particular 
keyboard might be slightly different. For example, arrows may map to editing 
keys or keypad arrows according to the keyboard. 

Table 1-8 UNIX Default Key Bindings 

Keystrokes Action

Ctrl-a Beginning of line

Ctrl-b,  ← Back one character
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Windows Bindings

On Windows, the set of key bindings is more limited but still exists (see Table 1-9). 

Ctrl-d Delete next character

Ctrl-e End of line

Ctrl-f,  → Forward one character

Ctrl-j New line

Ctrl-k Kill to end of the line

Ctrl-l Redraw display

Ctrl-n Next line

Ctrl-o Put remainder of line on a new line

Ctrl-p Previous line

Ctrl-u Delete to the beginning of the line

Ctrl-w Wipe (delete) selected text

Ctrl-y Yank back a single line of killed text (unkill)

Ctrl-↑ Move up through recorded inputs (command area recall is discussed on 
p.43)

Ctrl-↓ Move down through recorded inputs

Backspace Delete previous character

Delete Delete previous character

Home Move cursor to first character of text area

End Move cursor to last character of text area

PgUp Move up one page

PgDn Move down one page

Ins Insert a new line (linefeed)

Table 1-8 UNIX Default Key Bindings  (Continued)

Keystrokes Action
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Changing the Key Bindings (on UNIX systems)

You may prefer UNIX-style or EDT-style bindings. These, along with many other 
defaults, are implemented through the file $XMATH/etc/Xmath.

To customize your key bindings, use a text editor to create a file called Xmath in 
your home directory. Into this file, copy the desired key binding set from 
$XMATH/etc/Xmath. Your Xmath file should contain only those changes that differ 
from the defaults. Close and save your file. 

The new key bindings become effective the next time you invoke Xmath. (For 
more information, see A.3 Changing Resource Parameters.)

Recalling Previous Commands

Xmath has a command area recall feature based on keystrokes, as shown in 
Table 1-10.

Table 1-9 Windows Key Bindings 

Keystrokes Action

Ctrl-a Beginning of line

Ctrl-d Delete next character

Ctrl-j New line

Ctrl-k Kill to end of the line

Ctrl-↑ Move up through recorded inputs (command area recall is discussed on 
p.43)

Ctrl-↓ Move down through recorded inputs

Delete Delete next character

Home Move cursor to first character of text area

End Move cursor to last character of text area
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■ Only syntactically correct inputs are recorded.

■ @ commands are not recorded as inputs.

■ Multiline inputs are recorded and recalled as one line.

■ One hundred inputs are recorded; the oldest are automatically discarded to 
make room for new inputs.

■ An @ command can only be entered in the Xmath Commands window 
command area on a line by itself. It cannot be issued from a MathScript batch 
file.

1.6.4  Message Area

The message area displays Xmath error messages and warnings. If an error 
occurred when you were typing in the command area, Xmath highlights the 
possible source of the error and displays a message in the message area (UNIX) or 
the log area (Windows). The input is not accepted until you fix the error.

Table 1-10 Command Area Recall Keystrokes 

Keystrokes Action

Ctrl-↑ Moving backwards, print recorded inputs in the command area.

Ctrl-↓ Moving forward, print recorded inputs in the command area.

@@ Execute the last command.

@@:p Print the last input in the command area.

@str Execute the last input starting with str.

@str:p Print the last input starting with str.

@n Execute the nth input.

@:l List all inputs in the log area.

@str:l List all inputs starting with str in the log area.

@ List the last 10 inputs. If @ is issued again (without an intervening Xmath 
command) 10 inputs back from that point will be listed.
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1.7  Help Window

Xmath function reference information is available in the MATRIXX online Help. 
The online Help includes all Xmath functions. Each topic explains a function’s 
inputs, outputs, and keywords in detail. See Chapter 2 of the MATRIXX Getting 
Started Guide for complete instructions on using the Help feature.

You can invoke the MATRIXX online Help as follows:

■ Select Help→Topic from the Xmath Commands window or type help in the 
command area of the Xmath Commands window; a listing of available topics 
appears in the left pane (see Figure 1-4). Scroll down to see additional entries.

■ Once in the Xmath Help window you can use the Topics Hierarchy (table of 
contents) in the left pane to locate topics. 

For example, to view a linear algebra function topic (for example, the function 
hessenberg( )), click the Math, Linear Algebra topic in the left pane, and then 
click hessenberg in the right pane.

■ You can also use the Master Index (see Figure 1-4 in the right pane) to locate a 
topic or function alphabetically. Using the alphabet at the top of the right 
pane, you can link directly to the topics for any given letter.
45



MATRIXX 7.0
Xmath User’s Guide
Figure 1-4 MATRIXX Help Window Topics Hierarchy and Master Index
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JumpStart: A Tutorial
This tutorial introduces basic Xmath features. It highlights some of the ways 
Xmath is different from other tools. After getting you started, this chapter 
provides the following major topics; the times shown are estimates of how long it 
takes to complete each section.

To use the JumpStart you must have a properly installed version of Xmath. You 
should also be familiar with the following:

■ Your operating system

■ A text editor

■ On UNIX platforms, your window manager

If you are new to the workstation environment described in this book, see 
Appendix A, X Windows and Motif. It will be helpful to new UNIX users 
because many UNIX-based window managers share common functionality. 
We assume that workstation users have X Windows and a window manager 
running before starting this tutorial. The Jumpstart is very basic and you will 

Topic Page Time to Complete

Basic Data-Handling 48 15 minutes

Functions and Commands 57 10 minutes

Graphics 58 30 minutes

Objects 70 60 minutes

MathScript 85 15 minutes
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be able to complete it even if you are unfamiliar with the workstation 
environment. 

If you find yourself having difficulties with the most basic elements, such as not 
understanding how to use the Xmath Commands window or how to get online 
Help, refer back to Chapter 1.

This tutorial contains many cross-references to other parts of the document. It is 
not necessary to consult the cross references to complete this tutorial. After 
completing the tutorial, you may want to look into some of the advanced features 
in Chapters 6 through 9. 

2.1  Starting Xmath for the Tutorial

In this section, we want you to create a directory called jumpstart, make that 
directory your working directory, and start Xmath. From a Terminal window 
(UNIX) or the Command Prompt window (Windows), enter the following 
commands:

% mkdir jumpstart
% cd jumpstart

Then start Xmath using one of the methods provided in 1.3.1, p.7.

You may stop or interrupt the tutorial at any point. Remember to save your work 
before you quit and to reload it upon startup again (see 1.3.4, p.11 for details.)

2.2  Basic Data-Handling

This portion of the tutorial discusses creating and organizing variables, as well as 
saving, deleting, and retrieving them.
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2.2.1  Creating Variables

A variable is named information. To create a variable, you must type into the 
Xmath command area. You can assign a name to data:

a=3.14

a (a scalar) = 3.14

and assign the results of expressions or the output of an Xmath function:

b=a+expm([1,2;3,4])

b (a square matrix) =

55.109 77.8766
115.245 167.214

Pressing Return or Enter executes everything in the command area. By default, 
your input is displayed in the log area, followed by the output. To suppress 
output display, terminate inputs with a semicolon (see p.93 for a way to change 
display behavior).

b;

If you input more than one statement on a line, a semicolon or question mark 
(which forces output) must be used as a separator. Type:

c=b^a; d=b/a? c=d-a;

d (a square matrix)=

17.5506 24.8015
36.7022 53.2528

The only output displayed is the value of d, but c exists. 

When entering multiple lines of text in the command area, use the Line Feed key or 
Shift-Return to start a new line, and press Return when you are finished. If your 
keyboard doesn’t have a Line Feed key select Edit→Insert New Line from the Xmath 
Commands window, or use the key combination appropriate to your platform (see 
p.19). 

In the following example, press Line Feed after inputting the numbers 3 and 6, and 
press Return after the right square bracket:

e=[1,2,3
   4,5,6
   7,8,9]
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e (a square matrix) =

  1    2    3
  4    5    6
  7    8    9

If you don’t assign a variable name to a valid statement, Xmath assigns the value 
to the temporary variable ans. The following expression uses the permanent 
variable jay to create a matrix of complex numbers and assign the matrix to ans:

e*jay;
ans?

ans (a square matrix) =

    j    2 j    3 j
  4 j    5 j    6 j
  7 j    8 j    9 j

ans will be changed the next time a statement output is not assigned to a variable.

To comment an existing variable use the comment command:

comment b "combined an expression and a function"

You must enclose the comment string, like all other strings in Xmath, in double 
quotes:

To retrieve the comment, use the commentof( ) function:

commentof(b)

ans (a string) =   combined an expression and a function

Xmath also displays the comment when you view the variable in the Xmath 
Variable Manager window, which is discussed in 2.2.3, p.53.

If you make an error, Xmath attempts to highlight the incorrect input. For 
example, type:

max(E)

What you typed remains in the command area with the E in reverse video. The 
message area displays E undefined in this scope.

Go to the command area and replace the capital E with a lowercase e:

max(e)

ans (a scalar) =   9
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The max( ) function now finds the largest value in the variable e. For detailed 
information on entering and editing text, see Editing Text by Selecting, Copying, and 
Pasting on p.20.

Using Command Recall

To print previous inputs to the command area, hold down the Control key and 
press the up arrow (Ctrl-↑). For more on command area recall, see p.23.

Sending Multiple Lines of Data at Once

On UNIX, you press Shift-Return after each line until you are ready to send the 
entire set of lines to Xmath; then you press Return.

On Windows, pressing Shift-Enter turns on multiline mode. In this mode, pressing 
the Enter key adds a new line rather than sending the command line to Xmath. 
Pressing Shift-Enter again turns off this mode. Pressing Enter a final time sends the 
multiple lines to Xmath for execution.

For example:

sends the multiline for-loop to Xmath at one time.

2.2.2  Variables and Partitions

Xmath variable names are case-sensitive (for example, MyVar, myvar, and MYVAR 
are different variables).

A partition is a named non-hierarchical directory that contains variables. Partition 
names are also case-sensitive.

UNIX Windows

for i=1:10 Shift-Return Shift-Enter
Enter

i? Shift-Return Enter

endfor Return Shift-Enter
Enter
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Xmath always starts in the default partition main. You can verify this by typing 
show partition in the command area. The full name of a variable includes its 
partition, so the variable a, found in partition main, is named main.a. However, 
you don’t need to supply a prefix when handling variables in the current 
partition.

Use the command new partition to create partitions. Other commands used for 
partition handling are set, show, and delete. 

1. Create new partitions:

new partition data1
new partition data2

2. Using variables in the current partition (the default partition main), create 
new variables for the partition data1:

data1.a=a\b;
data1.b=lyapunov(b,c);

3. Go to the new partition data1 and display a list of the variables in that 
partition to the log area:

set partition data1
who # List variables in the current partition

data1:
a -- 2x2
b -- 2x2

4. Attach a comment to a partition in the same way you comment variables, 
except that you must put a period after the partition name to distinguish it 
from a variable name:

comment data1. "vault"
commentof(data1.)

ans (a string) =   vault

5. Use the same variable name in other partitions:

data2.a=random(4,4);
comment data2.a "a random matrix"
who data2.*  # List variables in the named partition

data2:
a -- 4x4

6. Look at all the partitions and all existing variables:
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show partitions # Shows all partitions
who *.* # Show all variables in all partitions

7. Delete a partition (data1).

To delete a partition, you must first empty it:

delete data1.* # Delete variables in data1.

To delete a partition you are in, change to another partition first:

set partition main
delete data1. # Delete the partition data1

2.2.3  Viewing Data

The Xmath Variable Manager window lists all variables in the current partition. 
While it is open, Xmath immediately updates it whenever changes occur in the 
viewed partition. 

1. To invoke the Xmath Variable Manager window, select Windows→Variables from 
the Xmath Commands window.

You should be viewing the current partition (main).

2. Click the Partition button in the Xmath Variable Manager window. In the dialog 
that appears, select main, and click OK. 

This lists the variables in main. Note that you are only viewing the partition; 
you have not changed your working partition. (Only the set partition command 
issued from the command area will change the partition. Remember, you can 
type show partition to see the current partition.)

3. Try the selections on the Variable Manager window View menu to change the 
organization of the variables. Try sort by Name, sort by Size, and sort by Type.

4. To close the Variable Manager window, select File→Close Window.

For additional information on the Variable Manager window, see 3.2.5, p.79.

2.2.4  Saving Data

The commands and functions in Table 2-1 save data to files. 
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You can perform save operations from the command area and from the File menu 
of most windows.

Save Command

The easiest save method is to type SAVE in the command area. When you do, 
Xmath saves all variables to a file named save.xmd in the current working 
directory. By default, SAVE produces a binary file with the variables saved in 
Xmath format. 

You can specify a list of variables, a filename, or a format. For example, 

save main.* file="main"  {ascii}

saves all variables in the partition main to an ASCII file named main.xmd in the 
current partition. Note that SAVE adds the .xmd extension for you. 

To save all variables to a binary data file via the File menu in either the Xmath 
Commands window or the Xmath Variable Manager window:

1. From the menu bar, choose File→Save All (UNIX) or File→Save (Windows).

The Save dialog comes into view. 

2. Add the filename data1.xmd to the path in the Selection field at the bottom of 
the dialog (UNIX), or select a directory and then specify a filename in the File 
name field of the Windows’ dialog.

For a complete explanation of this dialog, see Specifying Directory Pathnames 
and Filenames on p.18.

3. Click OK or Save.

If you look at the log area, you will see that the text equivalent of your save 
action is echoed there (UNIX only). The current message will be similar to:

save file="/YourPath/data1.xmd"

Table 2-1 Save Commands and Functions 

SAVE Save variables in Xmath or MATRIXX format to a binary or ASCII file. This 
is the standard way of saving data.

PRINT Print the values of a list of variables to an ASCII file.

fprintf( ) Convert numeric values to a string representation, and then write the 
string(s) to an ASCII file.
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Print Command

The print command writes a variable in a text format you can read.

To print a specific variable to a text file:

set seed =0;
x=(rand(2,2))*sin([5,1;4,2]);
print x file="x.dat"

The function oscmd( ) lets you use an operating system command to display the 
contents of the file you created to the Xmath Commands window log area:

oscmd("cat x.dat")  # UNIX
oscmd("type x.dat") # Windows

main.x =
-0.77482 0.865292
-0.250204 0.300552

ans (a scalar) = 0

2.2.5  Loading Data

Load Command

If you type load (with no file specified) in the command area, Xmath looks for the 
default file save.xmd in the working directory and loads it if it exists. 

To test this, go to the command area and input the sequence below; these 
instructions assume you are in partition main.

a=1; b=2; c=3; d=4; # Create variables a, b, c, and d

save # Save all variables to save.xmd

who *.* # Verify that the variables are in main

delete *.* # Delete variables in main

who *.* # Verify that the variables have been deleted

You can then retrieve selected variables or all saved data:

load c d "save" # Load variables c and d from save.xmd

-or-
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load # Load all variables in save.xmd

who *.* # Verify that the variables have been loaded

Xmath supplies the default filename extension xmd when you don’t supply one. 
Another way to load saved data is to go to the commands or Variable Manager 
window and select File→Load from the menu bar.

Read Command

The READ command copies the contents of a file into an Xmath matrix. This 
function is particularly useful for loading externally generated data into Xmath. 
The data can be character, integer, or floating-point types, as well as ASCII. 
Consult the MATRIXX online Help READ topic. Note that the arguments are a 
filename, the rows and columns of the data, the type (or format), and the number 
of bytes in the file you want to skip before reading.

Read in the file you made with the print command (see Print Command on p.55). 

■ Specify the input filename (x.dat), give the row and column dimensions of the 
data, and specify the input file format (ascii). 

■ Specify an offset of 1; this instructs Xmath to skip the first line (main.x =). 

We do not have to worry about the last line in the file, (ans (a scalar) = 0), 
because read stops after the two rows and columns you specified have been 
read. 

xx=read("x.dat",2,2,"ascii",1)

xx (a square matrix) =

-0.77482 0.865292
-0.250204 0.300552

2.2.6  Cleanup

This concludes the section on basic data-handling. You can delete the variables 
and partitions you created, as you do not need them later. Do not, however, delete 
the partition main; delete only its contents.
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2.3  Functions and Commands

If you have been working through the tutorial, you have already used several 
common commands and functions. In addition to discussing functions and 
commands, this section includes references to more detailed passages. 

2.3.1  Function Syntax

Functions operate on a list of input values and return output values. Input 
arguments are passed by value (a local copy is nested inside the function scope).

Functions are called in the following form:

[out1,out2,...,outn] = funName(in1,in2,...inm,{options,keywords})

For examples of this syntax, see the MATRIXX online Help Functions topic.

■ Input and output arguments are separated by commas. 

■ Keywords are enclosed in braces and separated by commas. 

■ When a string is required, it must be enclosed in double quotes; for example, 
line_color="blue". 

■ If a function has multiple outputs, by default only the first output is returned. 
You must use the brackets if you wish to acquire more than one output.

The following example shows two possible syntaxes for residue. Input the 
following data to see the default output behavior:

sys=(makepoly([2:4:6])/makepoly([3,5]));
Rp=Residue(sys,[5,10,inf],{tol=.5})

To see both outputs, use square brackets and assign the outputs to variables:

[Rp,C]=Residue(sys,[5,10,inf],{tol=.5})

For additional information, see 3.5 Using Predefined Functions and Commands, p.85. 
Xmath function syntax is detailed for each function in the MATRIXX online Help. 
For a detailed description of how to use MathScript to define your own functions, 
see Chapter 6.
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2.3.2  Command Syntax

Like functions, commands operate on inputs. However, command inputs are 
passed by reference and can be changed within the command. 

In the MathScript language, command syntax is as follows:

command arg1, arg2, …argN, {keywords}

For examples of this syntax, see the MATRIXX online Help Commands topic.

If you have been working through the tutorial, you might realize that intrinsic 
commands have a special syntax. Syntaxes we have used are:

new partition part_name
set partition part_name
delete part_name
save "filename" var_1 var_2 var_n
load "filename" var_1 var_2 var_n

The most obvious difference is that these commands require spaces rather than 
commas as separators. The whatis command reveals a fundamental difference 
between these commands and other MathScript commands (MSCs):

whatis save

save: intrinsic command

Xmath includes many intrinsic commands and functions. These commands and 
functions are part of the Xmath executable.

See the MATRIXX online Help for descriptions of Xmath commands. For a 
detailed description of how to use MathScript to define your own commands, see 
Chapter 6. 

2.4  Graphics 

The Xmath plot( ) function provides two and three-dimensional graphics that you 
can manipulate interactively while they are displayed in the Xmath Graphics 
window. This section introduces plot( ) and several types of plots it can create.
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Two additional general purpose plotting functions, uiPlot( ) and plot2d( ), 
complement the capabilities of plot( ). A brief description of these functions can be 
found in 4.1 . Xmath Plotting Functions and Commands

2.4.1  Plot( )

The plot( ) function creates a graph object that Xmath displays in the Xmath 
Graphics window. The most complete syntax for plot( ) is:

graphObj = plot(x,y,z,colorindex,{keywords})

2D graphs are produced with y, or x, y as arguments, while 3D graphs require x, y, 
and z. For other plot( ) syntaxes see 4.2 Using the plot( ) Function, p.108.

plot( ) behaves like other Xmath functions in the following ways (functions are 
discussed in 2.3 Functions and Commands, p.57.):

■ If no output variable name is assigned, Xmath assigns the output (graph 
object) to the temporary variable ans.

■ Xmath displays a graph object in the Xmath Graphics window when it is 
created unless you use a semicolon as a terminator. If you create a graph 
object within a MathScript, only a ? terminator causes it to display.

■ You can display a graph object with the ? terminator anytime after creation.

■ You can save and load a graph object.

Keywords

Keywords define a graph’s labeling, layout, and appearance. This tutorial 
introduces basic keyword use. For a complete keyword listing, see Table 4-5, 
p.113, or the MATRIXX online Help plot topic. You can create or change many of 
the features for which keywords are used interactively via the Xmath Graphics 
window menus or the Xmath Palette.

Graph Objects

plot( ) is the only function that outputs a graph object. Xmath creates a graph 
object whenever it displays the output of the plot( ) function in the Xmath Graphics 
window. If you specify an output variable name, Xmath writes the contents of the 
Xmath Graphics window to the variable; otherwise, Xmath writes the contents to 
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the default variable ans. If you suppress plot with a semicolon, Xmath writes 
nothing to the Xmath Graphics window. (Other functions may display plots in the 
Xmath Graphics window, for example, windowing functions such as firwind( ), but 
their actual function output is numeric. Only plot( ) allows you to name the 
contents of the Xmath Graphics window.)

You can copy, save, display, and reload a graph object like any other variable. 
Additionally, it can be altered or used in a new graph if you use the keywords 
keep or copy. We explore the implications of the graph object later in the tutorial.

2.4.2  Working in the Xmath Graphics Window

When you use the plot function without suppressing its output, Xmath opens the 
Xmath Graphics window. The following mouse actions are defined for this 
window:

■ To select an object, click it. 

An object can be a text string, label, grid, data, and so forth.

■ Double click an object to select the object and bring up the Xmath Palette.

The palette title area (center top) gives information on the object you’ve 
selected. For example, the title Xmath Palette (tics:axis line) indicates that 
you’ve selected an axis line.

Different menu items and palette locations on the Xmath Palette are enabled 
based on your selection. For example, if a label is selected, the Font and Point 
menus are enabled, and the text color can be changed via the palette. 

■ If you have difficulty selecting an object (for example, you attempt to select a 
tic mark, but you keep getting the axis), then hold down the Shift key while 
clicking. 

Xmath cycles through selecting the objects closest to the cursor. A glance at 
the palette title area reveals the selected object.

■ Click and drag to move objects. 

Objects that you can move independently are the legend, date, time, free text, 
and graphics that you create with the graph tools in the Xmath Graphics 
window icon bar. You cannot move a graph and its associated plot data, grids, 
labels, axis information, and so forth interactively, but you can move the 
entire graph with the plot( ) keyword position (see p.137). 
60



2

2
JumpStart: A Tutorial
2.4.3  Using Plot and Graph Objects

You can plot objects in two- or three-dimensional plots.

Using 2D Plotting Capabilities

Before continuing, generate a few waveforms:

set seed = 0 # Set random seed
a = sin(logspace(1,10,15));
b1 = kronecker(a,a);
b2 = b1 + 0.2*random(1,225);

Here graph_b1 is a graphical object with b1 plotted versus a time sequence:

t=0:0.01:2.24;
graph_b1=plot(t, b1,{title="xy plot",x_lab="time(sec)"})?

If you can’t see the graph, select Windows→Graphics to bring the Xmath Graphics 
window to the front.

Plot b2 with specific labels and titles:

graph_b2=plot(b2, {y_lab="volts",x_lab="sample",
title = "sample display",legend = "noisy wave"})?

You can plot the original noise-free waveform b1 over the existing plot by copying 
the graph object graph_b1 into the current graph. In the command area type:

both_b=plot(b1,{copy=graph_b2,line_style=3,
line_width=2,legend = "original wave",!grid})?

Figure 2-1 shows the result. b1 is plotted as a thicker dotted line added to 
graph_b2, a new entry is added to the legend box, the grid is suppressed by the ! 
negator, and the image is given the name both_b.
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To see the first plot, type:

graph_b1?

You do not need to execute the previous plot call to see the graph. graph_b1 is 
unchanged because the keyword copy was used and the current contents of the 
window were given a new name (both_b). If you are adding to a plot and it is not 
important to retrieve your previous efforts, use keep instead of copy. keep is much 
faster than copy. 

When you make interactive changes to a graph object displayed in the Xmath 
Graphics window, the changes immediately become part of the current graph 
object. To preserve graph_b1 as it is, rename the graph before making changes in 
one of following ways:

■ From the Xmath Graphics window menu bar select File→Bind to variable and 
save the contents of the Xmath Graphics window to the name g1.

■ From the Xmath Commands window command line, type:

g1=plot()

Figure 2-1 Overlaid Graph Objects
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Calling plot( ) with no arguments binds the contents of the Xmath Graphics 
window to the output variable name.

To illustrate that changes immediately become a part of the current graph object, 
go to the Options menu and turn on the timestamp and datestamp; then move 
them to new locations. Double-click a text string, and then change the font and 
point size using the Xmath Palette. Double-click a curve either in the data or in the 
legend, and then go to the Xmath Palette and change the marker and line styles.

Display the object graph_b1 and then the object g1:

graph_b1?

g1?

Using 3D Plotting Capabilities

To demonstrate some of the 3D plotting capabilities, create x, y, and z:

x= [-2*pi:.65:2*pi]';
y= logspace(1,2*pi,20);
z= sin(x)./x*(sin(y)./y);
plot(x,-y,z,{title="A 3D Plot",xlab="the xlabel",
ylab="the ylabel",zlab="the zlabel",!grid})?

Figure 2-2 shows these results.
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You can rotate 3D plots with the rotation tools on the far right of the menu bar in 
the Xmath Graphics window. The first tool allows you to rotate in all directions 
(unconstrained); the remaining tools rotate about the three principal axes. Select a 
rotation tool in the icon bar, and then move to the plotting area. When the tool is 
active, just the grids are shown; click and drag the cursor until the grid is in the 
position you want to see, and then release the mouse. Xmath redraws your graph 
in the new position. 

To return to the initial plot position:

Select View→Reset. 

To turn off the rotation tool:

Click the arrow (selection tool) on the far left of the menu bar.

2.4.4  Using Different Plot Types

In this section, we illustrate the use of different kinds of plots: strip, polar, bar, and 
contour. 

Figure 2-2 3D Plot with Labels and Title
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Strip Plots

The strip keyword aligns two or more waveforms in stacked graphs sharing a 
common x-axis. Optionally, you can specify the number of curves you want in 
each graph. (Strip plots, like all other multiple graph plots, cannot be rotated or 
zoomed.) The example below plots four variables; strip=2 specifies that each 
graph should contain two curves (see Figure 2-3). We specify an optional 
line_style vector with legend to distinguish the original values of b from the 
absolute values.

set seed = 0 # Set random seed
a = sin(logspace(1,10,10));
b1 = kronecker(a,a);
b2 = b1 + random(1,100);
t=.1:0.05:5.05;
plot (t, [b1;b2;abs(b1);abs(b2)]',{strip=2,

title ="strip chart",line_style=[2,1],
legend=["volts","abs"],xmax=5.1,
ylab=["b1 volts","b2 volts"],xlab="time"})?

Xmath creates a single legend, and the two plots share the title and xlab. Strip 
chart data is linked; to illustrate this, select a curve in one of the plots; the 
corresponding curve in the other plot is also highlighted.

Figure 2-3 Strip Plot with Two Curves in Each Strip
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Polar Plots

Xmath can display data in polar plots (see Figure 2-4). For example, 

r = abs(sin(0:.1:35.9));
theta = 0:1:359;
plot(theta,r,{polar, fg_color="gray2",
line_color="royal purple", line_width=2})?

Bar Plots

Xmath also has bar graph capabilities.

Bar plots can be overlaid using the keep keyword. If a variable name is not 
specified, keep adds what you specify to the current contents of the Xmath 
Graphics window. The results of the example below appear in Figure 2-5.

plot(10:-1:1,{bar})?
plot([8,4.5,2,6,4.5,5,1.5,2,.5,.7],
{keep,bar,!xgrid,legend})?

Figure 2-4 Polar Plot
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Contour Plots

x= [-2*pi:.6:7]'; y=x;
z=1.2 + sin(x)./x*(sin(y))';

The first graph is a 3D surface plot, with grids suppressed:

plot (x,y,z,{!grid})?

With the keep keyword, you can overlay a 2D contour plot of the same surface 
(see Figure 2-6):

plot(x,y,z, {keep,contour2d,!face,contour_interval = 0.5})?

Alternatively, you can display a 3D contour plot:

plot (x,y,z, {contour3d})?

Figure 2-5 Overlaid Bar Plots
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2.4.5  Displaying Multiple Plots at Once

The rows and columns keywords allow you to display up to 25 different 2D and 
3D graphs at once. The values you assign to rows and columns determine how the 
screen is subdivided. Plots are then positioned on the screen with a combination 
of row and column numbers or a graph_number. The rows and columns keywords 
are initiators. This means they remain in effect until a plot call that does not 
contain a row or column keyword is issued; at this point the default values 
rows=1, columns=1 are reset.

The following example places four plots on the screen in two rows and two 
columns. Note that you don’t need to specify row=1 or column=1; these are 
default values. The result is shown in Figure 2-7.

set seed 0
h=histogram(rand(1:100),{nbins=7,noplot});
plot (b1,{rows=2,columns=2, line_color="blue"})?

plot (theta,r,{polar,row=2, fg_color=”gray2”,
line_color=”royal purple”, line_width=2})?

Figure 2-6 3D Plot with 2D Contour
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plot (h,{bar,column=2,!xlab})?

plot (x,y,z, {contour3d, xinc=4, yinc=4,!grid, graph_number=4})?

2.4.6  Animating Plots

Given a series of plots, the animate keyword draws each plot as fast as possible so 
the progression looks like movement. For the following example, create a vector:

an1=sin(logspace(1,10,25));
an2=an1(25:-1:1);
an3=kronecker(an1,an2);

We will be looking at an3 using 100 points at a time. First, we plot the entire vector 
using animate and a fixed axis (axisfix). By default, axes are adjusted to the 
current plot range, so, if animate is enabled, axes may change while plotting. In 
this call, axisfix holds the axes of the current plot (until they are changed), ensures 
that the plot background remains the same, and (since the whole vector is plotted) 
that the plot area is not too small for the plot.

plot(an3,{animate,axisfix,xmax=100})?

Figure 2-7 Different Plot Types Positioned with row and column Keywords
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The animate keyword stays active until it is disabled explicitly. 

Use a loop to plot portions of the data while animate is enabled:

for i=1:7:524
plot(an3(1,i:i+100))

endfor

To turn off animate type:

plot({!animate})

Alternatively, you can use plot({reset}) to reset all plot defaults.

If you are curious about axisfix, repeat the above example without it, and watch 
the axes.

2.4.7  Finishing the Graphics Tutorial

The above examples show only a sampling  of the options available for plot( ). 

For more information on plot( ) graphics, first ensure that animate is switched off. 
Then run the graphics demo:

plot({!animate})
execute file = "$XMATH/demos/graphics"

Also see 4.4 Interactive Xmath Graphics Window, p.151, and the MATRIXX online 
Help Xmath, Plotting topic.

This ends the graphics portion of the tutorial. Before moving on, you should 
delete the variables you created in this section:

delete *.* # Delete all variables in all partitions

2.5  Objects

Unlike most numerical tools, which only deal with matrices, Xmath employs 
object-oriented programming principles. See Figure 5-1, p.168 for a full 
description of the Xmath object hierarchy structure. For example, the Toeplitz 
matrix class is a special kind of square matrix class. It inherits all the properties of 
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the square matrix class but automatically takes advantage of specific operations 
which can be performed more efficiently for Toeplitz matrices. 

Benefits from Xmath’s object-oriented structure include:

■ Fewer variables to manage. A single variable can represent several very 
complex pieces of data. Therefore, you don’t need as many variable names, 
which simplifies variable management.

■ Fewer functions. For example, a single function handles continuous and 
discrete cases.

■ Faster calculations. Many objects take advantage of optimized algorithms. 
This is especially true of all the specialized matrix objects. Xmath recognizes 
special data properties and automatically uses an optimal method if available.

■ More intuitive syntax and ability to overload operators. Overloading means 
that a single operator can have different meanings when it interacts with 
different objects.

■ More compact user code. Because objects have clearly defined properties, it is 
simpler for users to check and handle data in their programs.

This section briefly discusses the major Xmath objects. There are examples of how 
to create each one and, in some cases, examples of special techniques with 
operators or indexing. The examples create unique data for each object. Therefore, 
you may quit the tutorial between any of the object discussions and restart when 
convenient.

2.5.1  Strings

A string is a set of characters enclosed in double quotes. To display double quotes 
within a string you must provide two sets of quotes (""). You can convert numbers 
to strings with the string( ) function, while the char( ) function gives the ASCII 
character for a given integer between 0 and 255.

a = "The total score is  ";
b = 301;
c = a + string(b)?

c (a string) =   The total score is 301

You can create a matrix of strings using the familiar matrix-constructor syntax.

a = ["one", "two"; "three", "four"]
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a (a square matrix of strings) =

  one      two     
  three    four    

When entering strings in the Xmath Commands window command area, remember 
that a single string must be complete on a line. If for some reason you must break 
the string, create separate strings and append them with the + operator:

text="Xmath strings cannot be continued " +...
"across lines, but separate strings can " +...
"be appended with the + operator."

text (a string) = Xmath strings cannot be ...

2.5.2  Matrices and Vectors

This section demonstrates how to create and use matrix and vector objects. It also 
shows how Xmath’s object-oriented structure improves the computational speed 
of matrix operations.

Creating Matrices and Vectors

You must enclose matrix specifications in square brackets; you separate elements 
in separate rows by commas and row elements, by semicolons or line feeds:

[1,2; 3,4] # A semicolon or a linefeed
[1,2 # can separate rows
 3,4]

ans (a square matrix) =
  1    2
  3    4

ans (a square matrix) =
  1    2
  3    4

A vector is a single row or single column matrix.   An apostrophe (’) transposes a 
vector or a matrix.

i=[1,2,3]

 (a row vector) =   1    2    3 

i'
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ans (a column vector) =

  1
  2
  3

Regular vectors are row vectors specified as three values in the form 
start:step:end.

time=0:0.01:10

time (a regularly spaced vector) =   0 : 0.01 : 10

The logspace( ) function creates logspaced vectors with points evenly spaced on a 
log scale. Like regular vectors, logspaced vectors are stored as three values.

log1=logspace(1,2,5)

log1 (a log-spaced vector) =   1 : 2 (5 points)

Transposing a vector or enclosing it in square brackets expands it:

log1'

ans (a column vector) =

  1      
  1.18921
  1.41421
  1.68179
  2      

[time]

ans (a row vector) =   0  0.01  0.02  0.03  0.04...

To form a vector with descending values, use a negative step:

k2=[2:-.25:1]

k2 (a row vector) = 2 1.75 1.5 1.25 1

To reverse a vector, use a negative step value:

k3=k2(length(k2):-1:1)

k3 (a row vector) = 1 1.25 1.5 1.75 2

Use vectors in expressions and to define new matrices:

g=[1:3;logspace(1,20,3)]
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g (a rectangular matrix) =

  1    2           3
  1    4.47214    20

Matrix Index Operations

Create the matrix testm:

testm = [1:3;4:6;7:9]

testm (a square matrix) =

  1    2    3
  4    5    6
  7    8    9

To find any element in testm, give the matrix name followed by the row and 
column index in parentheses:

testm(2,3)

ans (a scalar) =   6

To find the second row in testm, use a colon (:) as a wildcard symbol in place of 
the column index to denote “second row, all columns”:

testm(2,:)

ans (a row vector) =   4    5    6

To find any column in testm, use the wildcard symbol (:) in the rows position:

testm(:,1)

ans (a column vector) =

  1
  4
  7

To find submatrices, use vector inputs:

testm(1:2,2:3)

ans (a square matrix) =

  2    3
  5    6
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The function find( ) allows you to find indices for matrix elements that meet a 
certain criterion. find( ) returns each index in [row, column] format.

find(testm > 7)

ans (an index list) =

  3    2
  3    3

The output indicates that the elements found in the third row, second and third 
columns (3,2) and (3,3) are greater than 7.

You can incorporate find results as a special indexing scheme to perform an 
operation on only the elements meeting the criterion in find.

testm(find(testm > 7)) = 0

test_matrix (a square matrix) =

  1    2    3
  4    5    6
  7    0    0

Xmath changed the elements greater than 7 to zeros.

Using Matrix Functions 

Matrix functions take advantage of the structure of matrix objects. The more 
specialized a matrix is (that is, the more properties it inherits), the greater the 
computational speed improvement. For example, consider computing the 
eigenvalues of a common matrix, a symmetric matrix, and a triangular matrix of 
the same size (100 ×100). 

The clock( ) function monitors elapsed CPU time. It returns the time in seconds 
since clock( ) was last called. Therefore, you should call it before and after the 
monitored process.1 

rmat = random(100,100);
clock({cpu});mm = eig(rmat); clock({cpu})?

Xmath automatically uses more efficient algorithms when the matrix fits a given 
structure. The above example tells how long it takes to find the eigenvalues of a 
general, random (100 ×100) matrix. 

1. clock( ) results depend on your machine’s configuration.
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In the following example, you can see how long it takes with a symmetric matrix 
of the same size. We use the transpose operator (') to ensure that the matrix is 
symmetric:

smat = rmat * rmat';
clock({cpu}); mm = eig(smat);clock({cpu})?

eig takes even more advantage of a triangular matrix:

tmat = triu(rmat);
clock({cpu}); mm = eig(tmat); clock({cpu})?

Xmath checks object properties before computations so that it uses the fastest 
algorithms and performs no unnecessary computations.

2.5.3  Polynomials

To create a polynomial, specify its roots with the polynomial( ) function, or specify 
its coefficients with makepoly:

poly1 = polynomial([1,5])

  (x - 1)(x - 5)

poly2 = makepoly([1:.7:4.5])

5  4 3 2             
  x + 1.7x + 2.4x + 3.1x + 3.8x + 4.5

The default variable name is x. Both functions have an optional string argument 
that specifies the variable name. For example:

p = polynomial([1+jay,1-jay],"s")

p (a polynomial) =

    2          
  (s  - 2s + 2)

Several operators and functions are defined differently for polynomials than they 
are for matrices. 

Multiplying two polynomials with the * operator returns the polynomial 
convolution:

poly3 = poly1*poly1

poly3 (a polynomial) =
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         2       2
  (x - 1) (x - 5) 

When adding two polynomials, the corresponding order terms of the two 
polynomials are added:

poly1+poly3

ans (a polynomial) =

   4  3 2 
  x - 12x + 47x - 66x + 30

Similarly, when adding a scalar and a polynomial, the scalar is added to the scalar 
term of the polynomial:

poly1+1

ans (a polynomial) =

   2        
  x - 6x + 6

When multiplying a polynomial and a scalar, the output format depends on the 
format of the polynomial:

poly1*2

ans (a polynomial) = 
  2(x - 1)(x - 5)

Use roots( ) to find the roots of a polynomial:

roots(poly3)

 ans (a column vector) =

  1
  1
  5
  5

Use polyval( ) to evaluate the polynomial with a scalar value for the variable:

polyval(poly2,3)

ans (a scalar) =   489.3

Indexing into a polynomial is similar to indexing into a matrix. To find and 
change the coefficient of the third element, type:

poly2(3)
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ans (a scalar) =   2.4

poly2(3) = 9

poly2(a polynomial) =

  5      4 3      2 
  x + 1.7x + 9x + 3.1x + 3.8x + 4.5

2.5.4  Dynamic Systems

Xmath represents a dynamic system as either a transfer function or a state-space 
system. A transfer function consists of two polynomials; a state-space system is 
represented by four matrices. Transfer functions can only represent single-input 
single-output (SISO) systems, but state-space systems can represent multiple 
inputs and output (MIMO) systems. Objects for both types of systems can be 
either discrete or continuous, depending on the value of the object’s sample rate.

Transfer Functions

A transfer function is built from numerator and denominator polynomials:

num = makepoly([1,-163,5.5]);
den = makepoly([1,2.7,5.6,3.5,8.1]);

Use system to create the transfer function:

sysTF = system(num, den, {dt = 1})

sysTF (a transfer function) =

          2            
         x - 163x + 5.5
  ----------------------------
   4      3      2            
  x + 2.7x + 5.6x + 3.5x + 8.1

  initial delay outputs
  0
  0
  0
  0
  Input Names
  -----------
  Input 1

  Output Names
  ------------
  Output 1
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  System is discrete, sampling at 1 seconds.

If you do not wish to specify a sampling rate, you can use the shorthand form: 
sys=num/den.

To extract the numerator or denominator of a transfer function, use numden:

[n,d]=numden(sysTF)

n (a polynomial) =

   2            
  x - 163x + 5.5

d (a polynomial) =

   4      3      2            
  x + 2.7x + 5.6x + 3.5x + 8.1

State-Space Systems

To create a state-space system of the form

use system with four matrices as inputs:

ha=[1,0,0,.1; 0,-.2,.1,0; 0,1,0,0;-.2,0,0,1];
hb=[.5,0,0,.3]';
hc=[1,0,1,0];
hSS=system(ha,hb,hc,0)

hSS (a state space system) = 

A
 1 0 0 0.1
 0 -0.2 0.1 0 
 0 1 0 0 
-0.2 0 0 1 

B
0.5
0 
0 
0.3

x· Ax B u+=

y Cx D u+=
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C
1 0 1 0

D
0

X0
0
0
0
0

System is continuous

Notice that Xmath creates continuous systems by default. To create a discrete 
system, include the keyword dt, which sets the sampling period in seconds:

hSSd=system(ha,hb,hc,0, {dt = .1});

To extract the state and initial condition matrices from a system, use abcd:

[ A,B,C,D,X0 ] = abcd(hSSd)

The functions sys2sns( ) and sns2sys( ) might interest you:

■ sns2sys( ) converts a system from MATRIXX to an Xmath object.

■ sys2sns( ) converts an Xmath system object to MATRIXX format.

Analyzing Dynamic Systems

You can display the time domain response of a system using the functions in 
Table 2-2. 

Table 2-2 Time Display Functions 

impulse( ) Computes the impulse response of a system.

initial( ) Computes the unforced response of a system to a given initial 
condition.

step( ) Computes the step response of a system.
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These functions return parameter dependent matrices (PDMs), our next topic. For 
more on these functions, see the MATRIXX online Help. 

bode, nyquist, and nichols display frequency-domain response in several 
standard formats. For example, to see the bode plot of the continuous-time system 
we created earlier, type:

bode(hSS)?

2.5.5  Parameter Dependent Matrices

A parameter-dependent matrix (PDM) is a collection of same-size matrices, with a 
vector (called the domain) attached; each matrix depends upon a corresponding 
element of the domain vector. A PDM stores matrices as functions of an 
independent element parameter (the domain). A PDM is often a matrix of a 
physical parameter, such as time, frequency, or speed. 

PDMs are built from string, vector, and matrix objects using the pdm( ) function. 
For example, the following PDM stores data in a legible compact format:

d=[95:99];
AR=[ 60.8; 59.3; 54.4; 50.7; 50.7];
CO=[ 41.2; 41.7; 36.3; 35.7; 35.3];
OR=[ 46.1; 47.5; 47.6; 46.7; 48.7];
WA=[ 45.4; 45.6; 44.0; 43.2; 43.9];
states=["AR","CO","OR","WA"]
eJobs=pdm([AR,CO,OR,WA],d,{domainName="Year",columnNames=states})

eJobs (a pdm) =

Year | AR CO OR WA 
-----+-------------------------
 95 | 60.8 41.2 46.1 45.4
 96 | 59.3  41.7 47.5 45.6
 97 | 54.4 36.3 47.6 44 
 98 | 50.7 35.7 46.7 43.2
 99 | 50.7 35.3 48.7 43.9

The advantage of storing the data, names, and domain together is clearer when 
we create a plot such as Figure 2-8.

defTimeRange( ) Computes a default time vector for simulations.

sys*u( ) Performs a general simulation, where u is a PDM representing 
system input.

Table 2-2 Time Display Functions  (Continued)
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g2=plot(eJobs,{strip,ymax=65,ymin=32,ylab="THOUSANDS",
line_color = "mulberry", line_width = 2})

PDMs are commonly seen as outputs from functions, such as those listed in 
Table 2-2. If we calculate the impulse response and step response of hSSd (the 
discrete state-space system created earlier), the responses are formatted as PDMs. 
The output is too long to show here, but you can view it in the log area:

hIm=impulse(hSSd);
hSt=step(hSSd)?

It is convenient to store these related PDMs together in another PDM:

hPdm=pdm([hIm;hSt],{rowNames=["Impulse","Step"]})?

Plot the responses separately with the strip keyword:

plot(hPdm,{strip})

shows the results.

Figure 2-8 PDM Plotted with the strip Keyword
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The size of a PDM is given as rows × columns × length of the domain:

size(hPdm)

ans (a row vector) = 2 1 303

Portions of a PDM are accessible with indexing, similar to matrices. Extract the 
fifth dependent matrix from hPdm:

hPdm(5)

ans (a pdm) =

domain | 
-------+----------------
 0.4 | Impulse 0.5594

 | Step 2.1394
-------+----------------

To look at only the impulse responses, type:

hPdm(1,1)

ans (a pdm) =

Figure 2-9 PDM Impulse and Step Responses Plotted Separately
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domain | 
-------+-----------------

 0 | Impulse 0 
 0.1 | Impulse 0.5 
 0.2 | Impulse 0.53 
 0.3 | Impulse 0.55 
 0.4 | Impulse 0.5594 
 0.5 | Impulse 0.5578 
: : :

To perform a general simulation, you can multiply a system by a PDM. Here we 
use freq to create a PDM.

u=freq(hSSd,deftimer(hSSd));
Y=hSSd*u;
plot(Y)

For more detailed information on PDMs, see 5.4, p.187.

2.5.6  Lists

A list object is a named collection of elements (objects). A list can contain varied 
objects (including other lists). It is one-dimensional, storing your specified objects 
regardless of dimensions or properties. Use the list( ) function to create this object:

set seed 0
scalar1 = 1;
string1 = "This is a string object";
poly = makepoly([1,2]);
matrix = random(5,5);
a_list = list(scalar1,string1,poly,matrix)

a_list (a list with 4 elements) =

1:
  1

2:
  This is a string object

3:

  x + 2

4:

  0.211325  0.756044  0.000221135 0.330327  0.665381
0.628392  0.849745  0.685731    0.878216  0.068374
0.560849  0.662357  0.726351    0.198514  0.544257
0.232075  0.231224  0.216463    0.883389  0.652513
0.307609  0.932962  0.214601    0.312642   0.361636
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A list containing four objects has a size of 4. To extract an element, specify its 
order in the list: 

a_list(3)

ans (a polynomial) =

x + 2

a_list(1)

ans (a scalar) =   1

2.6  MathScript

MathScript is the language of Xmath. Every instruction you have typed into the 
Xmath Commands window so far is a MathScript statement. With a MathScript 
script file, you can create and define a MathScript function, command, or object as 
MathScript entities, which are immediately available for use without special 
linking or compiling. (Chapter 6 describes how to create, define, and debug 
MathScript entities.)

2.6.1  MathScript Features

MathScript provides the following features:

■ Familiar programming constructs such as for and while loops and if 
statements.

■ Nested expressions:

x =  20 * log(abs(1 + 2 * jay))

■ Functions to obtain interactive user input, such as getline( ) and getchoice( ).

UserIn=getline("Enter the number of states now:")

vote=getchoice("Choose or Lose", ["Repub","Demo","Inde"])

■ Functions to determine whether objects possess certain properties (check and 
is). For example:
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a = [1,0;0,1] 
check(a, {identity})

ans (a scalar) =   1

These features and more programming issues are discussed in Chapter 6.

2.6.2  Debugger Window (on UNIX Systems)

The MathScript Debugger window (Figure 2-10), referred to as “the debugger,” 
allows you to interactively debug MathScript. Usually the debugger is activated 
because a script contains a syntax error or a runtime error (see 6.4, p.245). It also 
opens if you have set up a file to be debugged. You call debug the same way for 
both functions and commands:

debug entity_name

The debugger opens whenever the function or command is invoked. To turn off 
debugging, type:

debug entity_name off

When the debugger opens, the top field in the window contains the source of the 
MathScript function or command you are debugging. The filename is displayed 
below the menu bar. If you don’t have write privileges to the source file, the 
source code may be opened read-only (not editable). The line that is about to be 
executed is highlighted (unless there are syntax errors in the function, in which 
case highlighting is used to identify the error). The message area, which displays 
error messages that occur during execution, is just below the source code area. 
You can use buttons at the bottom of the window in lieu of debugger commands.
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Run the debugger demo. It instructs you on how to edit an MSF that contains 
syntax errors. From the command area, type:

execute file="$XMATH/demos/debuggingMS1"

For more on the debugger window, see 6.4, p.245.

Figure 2-10 Debugger Window (on UNIX Systems)
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2.7  GUI Tools

Xmath offers a programmable graphical user interface (PGUI or GUI). For an 
introduction to the GUI, and instructions on starting and using the GUI demos 
and tools, see Chapter 9, Graphical User Interface. 

To see some examples of GUI tools, type:

guidemo

To exit Xmath, see 1.3.3 Exiting Xmath, p.10.

2.8  Conclusion

This concludes the Xmath tutorial. 

As you worked through the tutorial, you’ve become acquainted with the concepts 
and procedures necessary to use the basic Xmath features (described in Chapters 
3 through 5). Chapters 6 through 9 discuss advanced topics:

■ Chapter 6 tells how to write your own functions and commands using 
MathScript.

■ Chapter 7 tells how to create your own MathScript object.

■ Chapter 8 tells how to link C, C++, or FORTRAN files to Xmath, and also 
details how to call Xmath from an external program.

■ Chapter 9 tells how to program your own graphical user interface.
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MathScript Basics
MathScript is the language of Xmath. MathScript contains many of the facilities 
common to high-level programming languages, such as logical expressions loops, 
comments, conditional statements, nested functions and recursion.

3.1  MathScript Statements

A statement is the smallest independent executable instruction. Here are some 
examples of statements:

x = 7
y = ones(3,3)
who
set format long

The first two statements are examples of assignments. The last two statements are 
examples of commands.

3.1.1  Assignments

The most common MathScript statement is an assignment. An assignment is a 
statement that sets a variable to a specific value defined by the expression on the 
right-hand side:

variable = expression
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■ If an expression output is assigned to a variable, use the question mark (?) 
terminator to display the result. To suppress the output, use the semicolon (;) 
terminator.

■ A carriage return is also a statement terminator. If set display is on, a return 
displays the result; if set display is off, nothing is displayed (see p.113).

■ Variable types do not have to be declared before assignment.

■ Objects can be completely or partially modified using assignment statements 
combined with indexing. For example:

y = [100,21:24]

y (a row vector) =   100    21    22    23    24    

y(1) = 0

y (a row vector) =   0    21    22    23    24

3.1.2  Rules for Names

Variable names consist of alphanumeric characters and internal underscores ( _) 
only. 

■ Name components must be less than 32 characters in length. For example, 
variable b in partition a (a.b) could have a total of 31 characters.

■ Names should not start with an underscore, because initial-underscore names 
are reserved for internal use.

■ Variable and partition names are case sensitive. The following variables 
represent two partitions and four different variables:

a.b; A.b; a.B; A.B;

You can create a variable with the same name as a predefined Xmath function or 
command; however, you will be unable to access that pre-defined feature until you 
delete the variable. 

3.1.3  Expressions

An expression is a combination of variable names, functions, and operators that 
evaluate to a single Xmath object. The Xmath object can then be assigned to a 
variable name. For example,
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(1+sin(pi/4))^2         # An expression

Expressions can be used as arguments to other functions or operators.

cep = abs(fft([1,-4,8,-2]))

The functions exist( ) and check( ) are exceptions. These functions require a 
variable name as an argument.

Logical Expressions

In MathScript, a nonzero value (with the exception NAN and Inf) is considered 
TRUE. All logical operators return 0 if FALSE and 1 if TRUE.

x = 3; x < (3 * cos(0))

ans (a scalar) =   0

Logical operators are “short-circuited.” For example, exp1 | exp2 | exp3 will 
return 1 if exp1 is nonzero without evaluating exp2 or exp3. Therefore, careful 
ordering of subexpressions in logical expressions may speed up execution.

Table 3-1 lists all MathScript logical operators. For a list of all Xmath operators, 
see Table 3-3.

 Table 3-1 MathScript Logical Operators 

Operator Effect

< Elementwise less than. 

> Elementwise greater than. 

<= Elementwise less than or equal.

>= Elementwise greater than or equal. 

== Elementwise equal.

<> Elementwise not equal. 

& Elementwise logical and.

| Elementwise logical or.

! The logical negator (!) appears directly before an expression. For example, 
!expr.
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Logical Expressions with Matrices

When used with logical operators, two matrices must be equal in size; the output 
will be a matrix containing the element-by-element comparison results.

a = [1,0;1,1];b = eye(2,2);
a & b

ans (a square matrix) =

 1    0
 0    1

ans is a matrix with 1 in the locations where a and b are the same.

a < b

ans (a square matrix) =

 0    0
 0    0

You can also make logical comparisons with the functions check( ) and is( ), which 
return a logical value. The functions all( ), any( ), and none( ) can also be used to 
return a logical value. See p.240 or the MATRIXX online Help for more details.

3.1.4  Operators

An operator is a nonalphanumeric symbol that operates on its operand(s). 
Operators with only one operand are called unary operators. Operators with two 
operands are called binary operators. Table 3-2 shows how operators are used in 
expressions. 

Table 3-2 Uses of Operators in Expressions 

Format Type Example

operator operand Unary (prefix) -x

operand operator Unary (suffix) x'

operand1 operator operand2 Binary x+y
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Table 3-3 lists the operators available in Xmath and their intrinsic functions; 
overloaded functions are described in other chapters.

 Table 3-3 Xmath Operators 

Xmath Operators

+ addition

- subtraction (and the unary operator negation)

* multiplication

/ right division, A/B solves the equation X∗ B=A

\ left division, B\A solves the equation B∗ X=A

' transpose (unary suffix)

*' Hermitian (complex conjugate) transpose

.* element wise multiplication

./ element wise division (left divided by right)

.\ element wise division (right divided by left)

^ 
or 
**

raise to a power

.^
or
.**

raise elements to a power

.*. Kronecker product

./. Kronecker right division

.\ Kronecker left division

& logical AND

| logical OR

! logical NOT (unary operator)

< less than

> greater than
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Operator behavior depends on the objects involved. Special behaviors are 
discussed in detail in the object descriptions in Chapter 5, Data Objects and 
Operators.

Operator Precedence

You can control operator precedence with parentheses. In Table 3-4, operators are 
ordered with precedence from highest to lowest (reading from top to bottom).

<= less than or equal

>= greater than or equal

== equal

<> not equal

= assignment

( ) indexing, precedence, and function reference

{ } keyword delimiters in function references

[ ] matrix construction and concatenation

Table 3-3 Xmath Operators  (Continued)

Xmath Operators

Table 3-4 Operator Precedence 

high non–associative ' *'

left–associative ** ^ .** .^

↓ left–associative * / \ .* ./ .\ .*. ./. .\.

non–associative ! unary + unary -

↓ left–associative + –

left–associative :

↓ left-associative > < >= <= == <>

left–associative &

low left–associative |
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3.2  Partitions

All variables reside in partitions. main is the default partition. You do not need to 
specify the partition name of a variable if it resides in the current partition; just 
call it by its local name. 

Partitions must be created using new partition before any variables may be placed 
in them. To create or use a variable in another partition, you must specify the 
partition name. (Partition names must meet the naming rules in 3.1.2 Rules for 
Names, p.90.) For example, 

job1.R = R # Assign R in the current partition to the 
# variable R in partition job1.

job2.R = job1.R # From the current partition, perform
# an assignment between two other
# partitions.

■ To show the current partition, use the show partition command:

show partition

main

■ To list all defined partitions, type:

show partitions

Notice the s at the end. 

Please perform the following steps to get a better understanding of partitions.

1. main is the default partition that is created whenever Xmath is started. If you 
are in main, you can create an object in partition main by typing:

xx = 1

This is equivalent to main.xx = 1. 

2. To create a new partition named var, type:

new partition var

3. You can navigate between partitions with the set partition command:

set partition var

show partition

var
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xx

xx not found.

4. Because xx is defined in partition main, its partition name must be included:

main.xx? # variable from another partition

main.xx (a scalar) =   1

yy = 55? # create variable in current partition

yy (a scalar) =   55

5. Return to the main partition. The original main.xx is in local scope, while yy 
exists in the partition var.

set partition main

xx

xx (a scalar) =   1

var.yy

var.yy (a scalar) = 55

6. A partition must be empty before it can be deleted. To delete a partition, use 
the delete command. First, delete the partition contents, then the partition 
itself:

delete var.* var.

3.2.1  Listing Defined Variables

To list all defined variables in the current partition, use the who command:

who

A single wildcard can be used with who:

who a* # List variables in the current partition
# that start with a.

who otherPartition.*1 # List all variables that end in 1 in another
# partition.

To list all variables in all partitions, type the following:

who *.* 
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Wildcards

Xmath allows the asterisk (*) and percent (%) symbols to be used as wildcards for 
viewing, saving, loading, or deleting variables.

An asterisk denotes “any characters.” Used by itself, an asterisk is a wildcard for 
all names. Therefore, delete * deletes all variables in the current partition. Used 
with other characters, an asterisk replaces any number of characters in that 
position. The percent sign replaces a single character in that position.

a3=4; a23=1; b22=144; c23=random(a3,a23);

who* #Show variables in the current partition.
who a* #Show variables starting with a.
who *3 #Show variables ending with 3.
who %2%" #Show 3-character names where 2 is

#the second character(a23, b22, c23).

3.2.2  Variable and Partition Comments

You may attach a comment string to a variable or partition name with the 
comment command. 

comment main. "this is the default partition"
a=97;
comment a "the first letter of the alphabet"

■ To retrieve the comment, use commentof( ):

commentof(a)

ans (a string) = the first letter of the alphabet

commentof(main.)

ans (a string) = this is the default partition   

■ You can also view a variable’s comment if you invoke the Xmath Variables 
window (see 3.2.5 Xmath Variables Window, p.99). 

NOTE:  You cannot use the wildcard * twice in a pattern. For example, *sys* is not 
allowed, but *sys%% is accepted.
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3.2.3  Permanent Variables

Permanent variables are values that have special meanings. These variables are 
defined in all partitions as shown in Table 3-5

.

The name of a permanent variable or predefined function/command can be 
overridden in the current partition or function/command scope, although it is not 
recommended. When a value that has been given the name of a permanent 
variable is deleted, the original definition reappears:

eps=2

eps (a scalar) = 2

delete eps

eps?

eps (a scalar) = 2.22e-16

sin=1?

sin (a scalar) =   1

sin(pi) # argument out of range

delete sin

Table 3-5 Permanent Variables 

Variable Definition

Inf infinity

Jay sqrt(-1)

NaN Not a Number

eps very small number used to initialize outputs to be near zero but not 
exactly zero

huge largest finite number less than Inf

null empty object

pi famous Greek number

tiny smallest possible number greater than 0

err global error status variable (set to NaN) 
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sin(pi)

ans (a scalar) =   1.22465e-16

3.2.4  ans

When a value returned from a function is not assigned to a variable name, it is 
assigned to the variable ans. 

sin(0.5)

ans (a scalar) =   0.479426

The value of ans is overwritten anytime the output of a function is not assigned to 
a variable. Note that the value of ans is local to the current partition.

3.2.5  Xmath Variables Window

The Xmath Variables Manager window (shown in Figure 3-1) is a graphical interface 
that simplifies variable management. From this window, you can view variable 
and partition information, and load and save data.

Select Windows→Variables to invoke the Variables Manager window. The Variables 
Manager window lists all variables in the current partition. At a glance you can see 
the variable’s type, size, and attached comments (if any). If a variable is locked, an 
@ sign appears on the far left. To display a variable, double-click on it. Numeric 
and string objects are displayed in the log area of the Xmath Commands window, 
and graph objects are displayed in the Graphics window.

Because the Variables Manager window is updated each time the value of a variable 
changes, it is a good idea to minimize or close the window when you don’t need 
it. Leaving it open while executing a lengthy For or While loop, for example, 
decreases Xmath’s execution speed.
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Fields

The mid portion of the window is devoted to variable information. Partition 
information is displayed at the bottom of the window. To view variables in a 
different partition, click the Partition button, and then select another partition from 
the subsequent dialog. 

Variable Name — The name of the variable.

Data Type — For variables, displays the major type: matrix, vector, polynomial, 
PDM, system, string, list, or graph.

Value — The value of the variable.

Size — For variables, the dimension of the object. For partitions, the number of 
variables in the partition. See the MATRIXX online Help size topic for more 
information. 

Comment — Displays the comments attached to the partition or the variables. You 
can scroll to see lengthy comments for variables, but you may need to resize 
the Variables Manager window to see a lengthy partition comment.

Name  — The name of the partition.

Figure 3-1 Xmath Variables Window (UNIX version)
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Menus

The Variables Manager window provides several pull-down menus with many 
functions. Some of the most common functions on the menus are also available 
from buttons immediately below the menu bar.

File — Allows you to save and load variables. For an explanation and an example 
of how to use the file selection dialog, see Specifying Directory Pathnames and 
Filenames on p.18. The load command accepts data saved from Xmath or 
MATRIXX.

If you want to load data that has not been created by the above applications, 
go to the command area in the Commands window and use the read 
command. read can place part or all of a data file into an Xmath matrix 
variable (see 3.7.3 Reading Non-Xmath Data Files into Xmath, p.112). save and 
load operations can also be accomplished from the command area of the 
Commands window (see 3.7 Saving and Loading Data, p.108).

The File menu also allows you to print and perform standard window 
operations.

Edit — Lets you perform various editing functions for the partition or variable.

Copy, Rename, and Modify Data operate on a selected variable; note that 
wildcards are not allowed here. Modify Data also allows you to lock or unlock a 
variable.

Delete removes the selected variable, and Undelete retrieves the last deleted 
variable. 

View — Controls the order in which variables are listed. By Name displays 
variables in case-sensitive alphabetical order from top to bottom. By Date (the 
default) displays variables in the order created. The latest variable is shown at 
the bottom of the list. By Size shows variables sorted by dimension from top to 
bottom. By Type shows objects grouped by alphabetized type.

Format — Allows you to set the format of the Value field for variables.

Options — Provides a Find function along with select and deselect functionality.

Find searches the current partition for the specified variable, and lists the 
result. A single wildcard is allowed in the find pattern. To find the specified 
variable in all partitions, select Edit→Find and specify the * wildcard in place 
of the partition name in the Pattern field. For example, to find the variable a in 
all existing partitions, specify the following pattern: *.a.
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3.3  Punctuation

MathScript has special uses for the ?, ;, ..., #, and . characters. These are illustrated 
in Table 3-6. 

Table 3-6 Punctuation Mark Usage 

A question mark is a statement terminator. When placed after a numeric or string 
object, the value is displayed in the log area; when placed after a graph object, the 
graph is displayed in the Graphics window. 

y = eye(3,3)?x=y/2;

y (a square matrix) =

  1      0      0
  0      1      0
  0      0      1

Interactively, the default display behavior (which can be changed via set 
display), is to display the output of all assignments and expressions not 
terminated by a semicolon. If this is the behavior, the question mark is only 
needed as a separator. If set display is turned off, output is suppressed unless a 
question mark is used (see p.113).

A semicolon (;) disables display to the log area, and acts as a separator or 
terminator. A semicolon disables display regardless of whether set display is on 
or off. 

x = 1:3:10; x'

ans (a column vector) =

   1
   4
   7
  10

?

;
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An ellipsis (...) is a continuation symbol that allows an Xmath statement to span 
multiple lines:

plot ...
(rand(1,50),{title="Testgraph",line_style=1})

Ellipses are not required if a line ends with a comma, or an operator:

plot (x,y,z,{x_lab="Hello",y_lab="Goodbye",
z_lab="Leave town before sundown!"})

However, you cannot continue all commands, even if you use the ellipsis. For 
example, you cannot split an output assignment; thus, the following multiple line 
entry results in an error:

[blocknr=selectedblocks,sbname=name,
sbin=inputs,sbinname=inputname,
sbout=outputs,sboutname=outputsignal] = querysuperblock();

You could split this example input before or after the equal sign (=) but nowhere 
else.

A pound sign (#) comments out everything to the right on a single line. To 
comment multiple lines of text, surround them with #{ }#.

#Comment a single line
#{You can comment
   multiple lines}#

Table 3-6 Punctuation Mark Usage  (Continued)

...

#
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3.4  Iterative Conditional Statements

In MathScript, For and While loops have the syntax shown in Figure 3-2. 

If statements in MathScript have the syntax shown in Figure 3-3.

Note that end can be used in place of endFor, endWhile, or endIf.

Figure 3-2 For and While Loops

For variable = expression

commands

endFor

•

•
•

While expression 
commands

endWhile

For Loop While Loop

•

•
•

For variable=vector, commands; EndFor

While expression, command; endWhile

Figure 3-3 If Statements

If expression

commands

elseIf expression

commands

else

commands

endIf

If relation, commands; endIf
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3.5  Using Predefined Functions and Commands

To determine the origin of a function or command use the whatis command:

whatis freq

freq : intrinsic function

whatis bode

bode : ISI function (path/bode.xf)

whatis build

build: intrinsic command

■ Entities referred to as Wind River functions and commands are written in 
MathScript. You can view the Wind River function and command MathScript 
source in the location returned by whatis, as shown above.

■ Intrinsic functions and commands are written in C++ and built into Xmath by 
Wind River; you cannot view this source. Chapter 6 describes how to use 
MathScript to define your own functions (MSFs) and commands (MSCs). The 
characteristics of Xmath objects are also intrinsic; Chapter 7 describes how to 
use MathScript to define your own objects (MSOs).

3.5.1  Command and Function Calling Syntax

The rules described in this section are general; they apply to both intrinsic 
functions and commands and MathScript functions and commands.

■ The names of functions, commands, and keywords are case-insensitive. 

■ Function and command names can be abbreviated to minimum of four letters, 
or the minimum number of characters that uniquely identify the name. 

For example:

cova([1,2;3,4]);
t = makep([1,2,3,4]);

covariance( ) can be called by specifying the first four characters, while 
makepoly( ) must be abbreviated to five characters (because it conflicts with 
makematrix( )):

■ Function inputs, keywords, and outputs are separated by commas.
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[Ke,ev,P] = estimator(Sys,Qxx,Qyy)

Aliases

Names or strings can be aliased to a shorter string with the alias command (see 
3.8.3 Abbreviating Command Names (alias and unalias), p.116). Then you can refer to 
the name or string by its alias. For example:

alias ef execute file
alias ts title="TOP SECRET";plot(A,{ts})

Input Arguments

■ The syntax for calling intrinsic commands and MathScript commands is 
slightly different. Inputs for MathScript commands are separated by commas, 
similar to MathScript functions.1 For example:

xgraph t, {tgraph, average}

The majority of commands supplied with the Xmath Core are intrinsic (see 
3.5 Using Predefined Functions and Commands, p.105), and the arguments are 
separated by spaces:

save "filename" a b c

Use the syntax shown in the MATRIXX online Help when in doubt. 

■ Functions and commands cannot be called with fewer than the required 
number of input arguments, or more than the maximum number of inputs (as 
specified in the syntax shown in the MATRIXX online Help). 

Keywords

■ Keywords are optional and case insensitive. Keywords must be placed inside 
curly braces { }, but the order is not significant.

■ A value can be assigned to a keyword. Keywords with no value assigned are 
given Boolean values. 

For example, the following calls give an identical result:

1. On the other hand, SystemBuild SBA commands are all written in MathScript, and use this 
syntax exclusively. 
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g=plot(x,{legend,!grid})?
g=plot(x,{legend=1,grid=0})?

If a keyword is specified but not assigned to an expression, its value is set to 1. 
This is useful for Boolean keywords, because 1 is interpreted as TRUE. 
Preceding a keyword with the negation operator (!) causes its value to be set 
to zero, or logical FALSE. The plot keywords specified above display a legend 
and no grid lines.

■ Expressions can be used as arguments to keywords.

t = plot (x, {x_max = (4 * 256), x_lab="time"})

Single and Multiple Output Arguments

■ As discussed in 3.2.4 ans, p.99, if no output variable is specified, the output is 
assigned to the default variable ans.

■ To view and assign multiple function outputs, an output name must be 
specified in square brackets on the left side of the equation for each output 
needed.

[T,S] = schur(A);

■ If functions return multiple arguments, the output arguments will be 
matched left to right. Consider the function size:

[outputs,inputs,states] = size(aSystem)

If a multiple output function is called with a single output name, the output 
will take the value assigned to the leftmost output according to the function 
syntax. 

x = size(aSystem) # returns outputs
[x,xx] = size(aSystem) # returns outputs, then inputs

■ You can skip specific output arguments. To do this, use commas as 
placeholders. 

[,,states] = size(aSystem)

■ Functions cannot be called with fewer than the required number of input 
arguments or more than the maximum number of outputs (as specified in the 
syntax shown in the MATRIXX online Help). 

See also Variable Arguments on p.252.
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3.6  Operating System Interface

The oscmd( ) function lets you use operating system commands while in the 
Xmath environment. The output of the operating system command is displayed 
in the Commands window log area. For example:

oscmd("ls") # UNIX
oscmd("dir") # Windows

The return value of oscmd( ) is the exit code of the operating system command. 
For UNIX, if the command passed to oscmd( ) is backgrounded with &, the return 
status is 0, not the execution status of the background command. This behavior is 
consistent with UNIX calls.

3.6.1  Manipulate and Show Current Directory

The Xmath command set directory defines the default working directory. Here’s 
how to change this directory:

show directory # Show current working directory.

/home/usr/xmath

set directory "/home/projX"
save x y z "3dTest.ms"

To set the directory via a dialog, select File→Set Directory. 

3.7  Saving and Loading Data

Xmath provides commands for reading data files and writing Xmath objects in 
files. One pair of commands, SAVE and LOAD, works directly on Xmath objects 
and files. To increase the flexibility of the interface, the commands PRINT, READ, 
and the function fprintf( ) work with a wider variety of file formats. 

The SAVE command writes Xmath variables to a file if entered without 
arguments:

save
108



3

3
MathScript Basics
All variables in all partitions are written to the binary file save.xmd, in the current 
working directory. This is equivalent to selecting File→Save All. 

The LOAD command without arguments loads the file save.xmd from the current 
working directory:

load

Alternatively, selected objects can be saved and loaded, and you can specify a 
different filename:

a = 1:1:10; b = "this is a test";c = 55;

Save a and b in file mysave.xmd:

save a b "mysave"; b = 27000;

Save b and c in file saveagain.xmd:

save b c "saveagain"
delete *
load b "mysave"
b

b (a string) =   this is a test

load b "saveagain"
b

b (a scalar) =   27000

The extension xmd is appended to the filename unless you specify a different 
extension. 

Objects with the same names as objects in the loaded file are overwritten. For 
example:

a = 1:1:10;
aa = "this is a test";
save 
aa = 55

aa (a scalar) =   55

load
aa

aa (a string) =   this is a test
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The data is saved in Xmath binary format by default. Alternatively, the data can 
be saved in an Xmath ASCII, MATRIXX binary, or MATRIXX ASCII (FSAVE) 
format.

save "mysave" {ascii} # Xmath ASCII
save "mysave" {MATRIXx} # MATRIXx binary
save "mysave" {MATRIXx, ascii} # ASCII

See the MATRIXX online Help topics SAVE and LOAD  for more information. For 
information on how to save and load files in Xmath format without starting 
Xmath, see LNX and UCI Functions on p.283.

3.7.1  ASCII Versus Binary Considerations

Format selection (ASCII or binary) is a tradeoff between loading speed and 
portability.

Compared to the ASCII format, the binary format loads faster in Xmath. The 
larger the data file, the more noticeable the speed advantage will be. On the other 
hand, the binary format is typically larger in size and is not portable across 
different Xmath platforms. For example, a data file created on SunOS will not be 
usable on Windows NT. Furthermore, a binary data file must be transferred as 
binary, for example, via the binary mode in FTP.

Before you send a binary data file via email, you must first encode the file with 
uuencode (or an equivalent mail encoder), and the recipient of the email can then 
use uudecode to recover the original binary file.

The ASCII format is fully portable. An ASCII format save file can be transferred to 
any Xmath platform with NFS, FTP, or email. However, some email gateways 
have restrictions on the length of lines of the email content. For such systems, the 
save file, even though it’s ASCII, should be treated as a binary file for the purpose 
of email transmission as mentioned above. Again, this requirement is the same for 
non-Xmath files that contain long lines.
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3.7.2  Saving Data in Non-Xmath Formats

print

The PRINT command outputs Xmath data to a file. 

a = [1.1,2.2,3.3;4.4,5.5,6.6];
print a file="print.tst"
oscmd("more print.tst") #UNIX

::::::::::::::
print.tst
::::::::::::::
main.a =
1.1    2.2    3.3
4.4    5.5    6.6

ans (a scalar) = 0

If a file of the same name exists, it will be overwritten.

fprintf( )

Using the same conventions for formatting as the C language routine fprintf( ), 
the fprintf( ) function converts numeric values to a string representation for 
display, and writes them to an external file. For example:

N = 3;
s=fprintf("fpr.asc","%d Laws of Motion"n",N)

where n is the newline escape character sequence (see 5.6.2 Special Characters in 
Strings, p.216). If an fprintf( ) call uses a filename that already exists, the output 
will be appended to the existing file:

s=fprintf("fpr.asc","%d Laws of Thermodynamics"n",N)

Print out the contents of the newly created file to the log area:

oscmd("more fpr.asc") # UNIX
oscmd("type fpr.asc") # Windows

::::::::::::::
fpr.asc

NOTE:  You can use the keyword reset to specify that the output file (if it already 
exists) be truncated. 
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::::::::::::::
3 Laws of Motion
3 Laws of Thermodynamics

ans (a scalar) = 0

Refer to the MATRIXX online Help for more information on PRINT and fprintf( ).

3.7.3  Reading Non-Xmath Data Files into Xmath

The read( ) function reads data files of binary numbers or ASCII text files into an 
Xmath matrix. The syntax for read( ) is:

matrix=read(filename,out_rows,out_cols,type,seek)

read( ) can be called with just the filename argument, in which case the entire 
content of the file is read into an Xmath string value. 

See the MATRIXX online Help read topic for more examples.

3.8  MathScript Environment

The SET, SHOW, GET, and REMOVE commands allow you to customize the 
MathScript environment. The SET command affects many settings, including data 
output format, and random distribution. Commands such as SHOW and 
REMOVE and the function get( ) support other utilities for displaying current 
variables and resetting conditions.

3.8.1  Changing Environment Settings

Certain aspects of the MathScript programming environment can be modified 
using the set command. For example, SET format changes the numerical output 
format:

x = 0.12345678901234567890?

x (a scalar) =   0.123457

set format longe
x
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x (a scalar) =   0.1234567890123457e-01

set format shorte
x

x (a scalar) = 1.234578e-01

set echo on

show directory

/disk/math/test

Table 3-7 is a list of variables that SET controls.

Table 3-7 Environment Variables Controlled with SET 

Variable Effect

autocompile Sets automatic compilation on/off for user-defined MSFs and MSCs 
(see MathScript Program Compilation and Execution (.xf, .xc), 
p.233). Default is On.

break Use from within the Xmath debugger (6.4 Using the Xmath Debugger, 
p.245) to set a breakpoint at a specified line number.

buffering Sets text buffering on/off for output to the log area. Default is Off. 
By default, Xmath sends output to the log area as soon as it is 
available. If you are looking for maximum possible speed, SET 
BUFFERING ON.

commanddiary Records command input in the file you specify (3.10 Recording an 
Xmath Session (Diaries), p.121). 

debugonerror Determines whether or not a script that contains a runtime error will 
be debugged. Default is On. See 6.4 Using the Xmath Debugger, p.245.

directory Sets the working directory. 

display When in interactive mode, if display is set to On, the result of an 
assignment is displayed to the log area unless a semicolon (;) is used 
to suppress the output. If display is set to Off, assignment outputs 
are not shown unless a question mark (?) is used.

When a MathScript file is executed, the interactive display setting is 
ignored. Function outputs, including plot output, are not shown 
unless the question mark (?) terminator is used in the MathScript.

Default is On.
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distribution Sets the distribution type for the function random( ). Options are 
uniform and normal. Default is uniform.

echo Sets on/off echoing of contents of executed MathScript files to the 
Commands window log area, or the Graphics window, as the case 
may be (see Echoing an Executable File, p.118). 

If you want a function output to be displayed upon execution (this 
includes plot output) a ? must be used in the file, and echo must be 
on when it is executed.

Default is Off.

format Sets numerical display output format. Choices are: compact, 
engineering, fixed, long, longe, scientific, short, shorte. fixed 
sets the number of decimal digits in a floating point number to the 
value defined with set precision (see precision below). Default is 
compact.

partition Sets the working partition (see 3.2 Partitions, p.95).
The default for a new Xmath session is main.

path Sets a search path for user-defined MSFs and MSCs (p.231). 
Multiple set path commands may be issued.

pause Sets pause to on/off. If pause is set to off, the pause command is 
ignored. Default is On.

precision Specify an integer representing the number of decimal digits. This 
number affects variable display when set format fixed is specified. 
Note, most machines cannot display more than 15 or 16 digits.

seed Specify an integer to be the random seed. The random seed is reset 
to 0 at the beginning of each Xmath session. To find the current seed, 
use show seed or get({seed}).

sessiondiary Record Xmath inputs and outputs in a file (3.10 Recording an Xmath 
Session (Diaries), p.121). 

timestamp Turn on/off variable timestamping whenever a variable is changed 
or modified. Turning timestamp off can save computational time 
when variables used in a loop. Default is On.

Table 3-7 Environment Variables Controlled with SET  (Continued)

Variable Effect
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The REMOVE command cancels or deletes environmental settings, such as path, 
sessiondiary, or commanddiary to cancel or delete the function. REMOVE fills this 
need:

remove commanddiary

To check the current setting of any SET parameter, use the SHOW command:

show seed

1.11121e+09

The function get( ) can be used to return a current setting that can then be 
assigned to a variable.

working_dir = get({directory});
working_dir

current_dir (a string) =   /home/xmath/data

3.8.2  Expanding Pathnames in MathScript Files

Commonly, pathnames are represented by environment variables. You can 
expand them within a MathScript file in several different ways. For example, 

set directory = $ENVIR_VAR

works because directory is a specific option designed for the SET command. On 
the other hand, if you use a general assignment, such as 

file = "$XMATH/foo"

Xmath provides the result

$XMATH/foo

uiupdate Turn on/off variable and partition updating whenever a variable is 
changed or modified. Turning uiupdate off can save computational 
time when variables used in a loop. Default is On.

watch Use within the debugger to set a watchpoint for the named variable.

Table 3-7 Environment Variables Controlled with SET  (Continued)

Variable Effect
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because this assignment does not contain a command that was specifically 
designed to expand environment variables.

If you want the expected results from the assignment statement above, you 
should use the get function with the keyword path. For example,

file = get({path="$XMATH"}) + "/foo"

provides the expanded pathname.

You can find additional examples of this type of usage in the following files:

$XMATH/modules/basic/hardcopy.msc
$XMATH/modules/basic/version.msc

You can also use the oscmd( ) with the $ENVIR_VAR format; in this case, the 
operating system expands the environment variable.

See the get( ), SET, and oscmd( ) entries in online Help for further information.

3.8.3  Abbreviating Command Names (alias and unalias)

The ALIAS command allows you to substitute a name for a text string. 

alias clear delete *
alias mkm makematrix

To see all current aliases, type:

alias

An alias defined in any context is local to the defined scope. For example, an alias 
entered from the command line is not accessible from an MSF, MSC, or MSO. 
Conversely, an alias defined in an MSF, MSC, or MSO is not accessible from the 
command line.

Use the UNALIAS command to undo any aliases. 

unalias clear

Alias substitution is performed at compilation time. Therefore, a code fragment 
similar to the following will not have the intended effect:

alias sl save
if do_load
alias sl load

endif
sl # Always substituted with load because that was 

# the last alias command.
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3.9  MathScript Batch Files

MathScript batch files contain sequences of Xmath statements. They are useful for 
setting up user environments, performing repetitious tasks, and processing 
programs in batch. MathScript batch files have no declaration statement, and 
therefore, no inputs or outputs.

Batch files are run using the execute file command. A MathScript batch file 
typically has the suffix .ms, but any suffix will do. If the suffix is .ms, you can 
execute the file without specifying the extension (see 3.9.1 Executing a Batch File, 
p.117).

If you do not want a function or command output to be displayed when the file is 
executed, use the semicolon terminator (see p.102). If you want the output to be 
displayed, you must use a question mark as a terminator. This also applies to the 
output of the plot( ) function.

Executable strings must also be terminated by a semicolon (;) or question mark (?). 
For example, the following is incomplete:

test_string = "show format";
execute test_string

From the above incorrect syntax, you receive the message: 

Error(s) in executing show format

The correct syntax is as follows:

test_string = "show format;"
execute test_string

3.9.1  Executing a Batch File

You can execute a batch file from either the command area in the Xmath Commands 
window or the File menu. From the command area, use the execute file command. 
For example, to execute a batch file called myfile.ms in the current working 
directory, type:

execute file = "myfile"
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3.9.2  Echoing an Executable File

By default, when you execute a MathScript file, the contents of the file itself are 
not echoed to the log area. If you specify SET ECHO ON, each statement is 
displayed to the log area as it is being executed. To turn this feature on, type:

set echo on

You can find out the current echo setting by typing:

show echo

To turn the echo off, type:

set echo off

3.9.3  startup.ms (on UNIX systems)

The environment variable XMATH_STARTUP defines the properties of the Xmath 
startup icon to execute the startup.ms batch file. This batch file contains 
MathScript statements that execute every time you start a new Xmath session. 
You can set up your initial working environment for the Xmath session (for 
example, you can specify a list of directories as a search path). 

Xmath looks for and executes startup.ms in the following order:

1. The space-separated list of directories specified in the environment variable 
XMATH_STARTUP

2. The optional xmath subdirectory under your home directory ($HOME/xmath/
startup.ms)

3. The current directory (./startup.ms)

The environment variable XMATH_STARTUP can be set to include multiple 
directories. For example:

setenv XMATH_STARTUP "/home/group /home/user"

Xmath will run startup.ms in /home/group and then /home/user. Example 3-1 
shows a sample startup.ms file.

Example 3-1 Sample startup.ms File

# set up aliases
alias sp set path =
# set path to several test directories
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sp "/usr/me/tests"
sp "/usr/me/tests/routines"
# set up new partition and go there
new partition projectX
set partition projectX
# output data display format
set format long

3.9.4  startup.ms (on Windows Systems)

The environment variable XMATH_STARTUP defines the properties of the Xmath 
startup icon to execute the startup.ms batch file. This batch file contains 
MathScript statements that execute every time you start a new Xmath session. 
You can set up your initial working environment for the Xmath session (for 
example, you can specify a list of directories as a search path). 

The following are sample definitions for %XMATH_STARTUP%.

Xmath looks for and executes startup.ms in the following order:

1. The space-separated list of directories specified in the environment variable 
XMATH_STARTUP

2. The optional xmath subdirectory under your home directory 
(%HOME%\xmath\startup.ms)

3. The current directory (.\startup.ms)

You can set the environment variable XMATH_STARTUP to include multiple 
directories. For example:

set XMATH_STARTUP="%HOME%\group %HOME%\user"

Windows NT: Set the path to the startup.ms batch file by selecting 
Start→Settings→Control Panel→System. From the System 
Properties dialog Environment tab, for example, add an entry in 
the User Variables field (Variable, Value):

XMATH_STARTUP %HOME%\user

Windows 98 or 
Windows 95:

Set the path to the startup.ms batch file by adding the 
following line to your AUTOEXEC.BAT file (or to any other 
startup batch file):

set XMATH_STARTUP=%HOME%\user

NOTE:  You must define the %HOME% variable yourself.
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Xmath runs startup.ms in %HOME%\group and then %HOME%\user. 
Example 3-2 shows a sample startup.ms file.

Example 3-2 Sample startup.ms File

# set up aliases
alias sp set path =
# set path to several test directories
sp "\\user\me\tests"
sp "\\user\me\tests\routines"
# set up new partition and go there
new partition projectX
set partition projectX
# output data display format
set format long

3.9.5  I/O Redirection

If you have a lengthy automated process that does not require interactive input, 
you can run it in background or batch mode using the tty (non-graphical) version 
of Xmath. 

To create a MathScript file suitable for batch execution, start by using an editor to 
write a script file containing the instructions as you would enter them from the 
Xmath command line. Alternatively, you can start with a command diary file. 
Data generated in the batch script file can be written to an external file using the 
SAVE command. 

If a file runs to completion and unsaved variables exist, Xmath asks the question: 

Modified variables that have not been saved exist; quit anyway? (y/n)

This presents a problem because you cannot respond while in batch mode. To 
bypass the situation, you must SAVE or delete the data at the end of the file. The 
final entry in a batch file must be QUIT. (If QUIT does not end the file, Xmath will 
remain in terminal mode.) 

I/O Redirection

To run the completed batch file from the UNIX command line, type:

% xmath -tty < batchfile.ms > batchfile.output
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where the MathScript input is contained in batchfile.ms, and the output results 
are redirected to batchfile.output. (The output file contains anything that would 
normally appear in the Commands window log area, so be sure that echo is set 
properly.)

3.10  Recording an Xmath Session (Diaries)

Xmath can automatically record commands and responses using command and 
session diaries. A command diary records user input only, while a session diary 
records user input and the Xmath responses. 

To create a diary, the environmental variable echo must be on. If it is off, a diary 
file may be opened but nothing will be recorded in it. To determine the echo 
setting, type:

show echo

If echo is off, you must type set echo on to activate it.

3.10.1  Recording Inputs (Command Diary)

Command diaries record MathScript input. A command diary is by definition an 
executable file; it contains all valid instructions issued while the command diary 
was set. However, when the file is executed, you may not see all the outputs you 
did when you captured the commands; you must either edit the diary to insert the 
proper terminators, or be sure to use them when you input the commands you are 
capturing.

To open a command diary, type:

set echo on

set commanddiary "mytest.ms"

where mytest.ms is the name of the diary file. The file is placed in the current 
working directory (see 3.6.1 Manipulate and Show Current Directory, p.108 for 
details on setting the working directory). To see if a diary file is already open, 
type:

show commanddiary
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If the specified file does not exist, it will be opened for writing. If a diary file of the 
same name exists, it will be closed and a new file opened.

t = 1:0.1:100
s = sin(t)
g=plot (s)?

To close a diary file, use the remove command:

remove commanddiary

Since a command diary contains only executable MathScript commands, you can 
replay the contents using execute:

execute file = "mytest"

Note the output behavior when the file is replayed. When the calls were typed 
interactively, the outputs of t and s were written to the log area, but when the file 
was executed the outputs were omitted. When a value is assigned to a variable, 
the function outputs will only be displayed if the question mark terminator (?) is 
used, as was the case for the graph object g. 

3.10.2  Recording Inputs and Outputs (Session Diary)

A session diary records inputs and outputs, that appear in the Commands window 
log area while the diary is open. This can be useful when the contents of a data 
object need to be recorded in the file. For example:

set echo on

set sessiondiary "session1"

test1 = 0.75;
exist(test1)
sin(test1)

remove sessiondiary
oscmd("more session1")

Because session diaries include outputs (which are not MathScript statements), 
they cannot be executed as command diaries until they are edited.
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This chapter begins with an outline of the plotting functions and commands 
available in Xmath. The remaining sections show how to graphically display your 
data with the plot( ) function, and also how to change its appearance interactively 
with the Xmath Graphics window.

4.1  Xmath Plotting Functions and Commands

4.1.1  General Purpose Plotting Functions

Xmath provides a choice of three basic plotting functions: 

■ The plot( ) function provides an easy to learn syntax for 2d and 3d plotting in 
an interactive graphics window. For a quick, interactive look at your data, and 
for 3d plotting, plot( ) is a good choice.

■ The uiPlot( ) function provides full featured 2d plotting integrated with an 
extensive programmable GUI facility. If you want more control over the 
formatting of your 2d graphics, or the ability to integrate plots with your own 
interactive Xmath PGUI tools, then uiPlot( ) has the power you need.

■ The plot2d( ) function recognizes most plot( ) keyword options and provides 
quick access to advanced formatting features of the uiPlot( ) function, while 
avoiding the cost of constructing a programmable GUI tool. Use plot2d( ) to 
obtain highly-customized 2d graphics without writing a PGUI tool.
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plot( )

The plot( ) function and its associated Xmath Graphics window provide complete 
interactive facilities for building, modifying, and viewing 2d and 3d graphics. You 
can specify graph characteristics as keywords to plot, or you can add or modify 
them interactively from the Xmath Graphics window menus or the Xmath Palette. 

The output of plot( ) is a graphics object. Rather than archiving an executable file 
that recreates a graph, you can save the images as graph objects. A graph object 
can be displayed in the Xmath Graphics window, altered with keywords, or 
combined with another plot to create a new image.

plot( ) keyword options facilitate multiple plots, strip plots, bar plots, polar plots, 
contour plots, and scatter plots. The animation mode of the Xmath Graphics 
window provides rapid sequential display of graphics objects.

This chapter provides additional detail on the capabilities of plot( ). For further 
information about plot( ) and associated plotting tools, see the MATRIXX online 
Help Xmath, Plotting topic.

uiPlot( )

The uiPlot( ) function formats and displays 2d plots (including line, scatter, and 
polygon) in any uiPlotArea widget of a programmable GUI tool. While plot( ) is 
limited to displaying its objects in a single Xmath Graphics window, uiPlot( ) can 
generate and display plots in multiple windows. However, this power comes at a 
considerable cost—the construction of programmable GUI tools and widgets.

uiPlot( ) features include interactive data-viewing, zooming, and curve selection. 
Animation is achieved through the binding of curves to Xmath variables. Custom 
callbacks can be programmed in GUI tools, providing application-specific, 
graphic interaction with the data.

The uiPlot( ) function syntax provides access to the structure of the underlying 
graphics database. The database hierarchy lets users specify graphics objects 
much like how one specifies a file path. Properties can then be set using either 
uiPlot( ) keywords, or generic option strings of the underlying graphics system, 
resulting in a wide range of custom formatting capabilities.

For more information about the programmable GUI, see 9. Graphical User Interface. 
For further details on using the uiPlot( ) function and associated plotting tools, see 
the MATRIXX online Help Xmath, Plotting topic.
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plot2d( )

The plot2d( ) function is based on uiPlot( ), and is designed to implement most 
capabilities of both plot( ) and uiPlot( ), while avoiding the overhead of 
programmable GUI tools and widgets.

In particular, plot2d( ) provides multiple graphics windows, interactive data-
viewing, animation through the binding of curves to Xmath variables, and the 
power of the uiPlot function syntax. Some new features have been implemented 
such as multiple Y-axes, advanced row/column layout options, and automatic 
data scaling in one coordinate while constraints are specified in the other.

For those familiar with plot( ) syntax, plot2d( ) supports most of the 2d-related 
keywords of plot( ). It is possible to convert most scripts by substituting plot( ) 
function calls with identical plot2d( ) calls.

The most obvious differences between plot2d( ) and plot( ) are that 3d plotting 
options and the graphics object are not supported. All uiPlot( ) functionality is 
available through the plot2d( ) function.

For further details on using the plot2d( ) function and associated plotting tools, 
see the MATRIXX online Help Xmath, Plotting topic.

4.1.2  Comparative Analysis: plot( ) versus plot2d( )

Table 4-1 plot( ) Advantages

3D Plotting plot( ) supports 3d lines and surfaces, and also 2d and 3d 
contour plots. The plot2d( ) function does not support 3d or 
contour plots.

Polar Plots plot( ) supports polar coordinate plotting. To display polar 
plots, plot2d( ) users must write their own conversion script.

Graph Object The graphic result of a plot function can be saved to a variable. 
plot2d( ) does not support graph objects. 
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4.1.3  Plotting Commands and Special Purpose Functions:

Several additional commands and functions are used with the general purpose 
Xmath plotting functions. Brief descriptions are given here. Some are discussed in 
more detail later in this chapter. For more information, see the MATRIXX online 
Help Xmath, Plotting topic.

colorind

The colorind function creates a colorindex matrix used as a fourth argument with 
the plot function to add color emphasis or a fourth dimension to 3d plots.

Table 4-2 plot2d( ) Advantages (these features also available with uiPlot)

Data Viewing plot2d( ) has the capability of displaying (X,Y) data values of 
curves in a pop-up window interactively activated by the Right 
Mouse Button (RMB).

Callbacks plot2d( ) callbacks can be attached to curves/sub-areas for 
click/drag/release with modifiers. The callbacks are 
implemented using MathScript.

Variable 
Binding

By binding a variable to a plotted curve, the plot2d( ) plots are 
updated as the variable changes. This is a superior to the plot( ) 
method of achieving animated display.

Polygons plot2d( ) has polygon plot capability. plot( ) does not support 2d 
polygon plots. 

Hierarchy 
Selection

By specifying hierarchy paths, selected elements of plot2d( ) 
plots can be addressed for setting/changing attributes.

Plot Inclusion A plot2d( ) sub-area can be made to include a plot from some 
other window. Useful for displaying a single post-stamp sized 
element of a large row/column plot. Any changes are updated 
automatically.

Drivers Setting generic Hoops options such as driver options, 
heuristics, visibility and frame are available in plot2d( ).
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ERASE

The ERASE command can be used to erase the contents of the Xmath Graphics 
window (plot function display).

HARDCOPY

The HARDCOPY command is used to create a hardcopy of the contents of the 
Xmath Graphics window (plot function display), or a graphics object (plot 
function display). It can also be used to create hardcopy of plot2d results.

pdmplot

The pdmplot function invokes a dialog driven process resulting in plots selected 
from a specified pdm. It can be used with either the plot or the uiPlot plotting 
system.

qplot

qplot is a simple uiPlot based function. Like plot2d, it provides use of uiPlot 
features with a pre-programmed GUI. However, qplot does not support plot and 
other high-level keyword capabilities of plot2d.

uiPlotArea

uiPlotArea is a programmable GUI function for creating uiPlotArea widgets.

uiPlotGet

uiPlotGet is a programmable GUI function for getting the current cursor position 
to be used with callback routines.
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4.2  Using the plot( ) Function

The plot( ) function creates 2D and 3D plots from data; complex components 
(those containing imaginary elements) are ignored.1 You can call plot( ) with any 
one of the following syntaxes:

graphObj = plot(y,{keywords})
graphObj = plot(x,y,{keywords})
graphObj = plot(x,y,z,{keywords})
graphObj = plot(x,y,z,colorindex,{keywords})
graphObj = plot()
graphObj = plot({keywords})
graphObj = plot(graphObj, {keywords})

In the preceding plot syntaxes, x is a vector or matrix; y is a vector, matrix, or 
PDM; and z is a vector or matrix. If z is a matrix, a color index matrix colorindex 
can be supplied to add color as a fourth dimension. Each syntax is discussed in 
the following sections.

An existing graph object can be reused as an input in several ways; it can be 
altered with keywords or combined with another plot to create a new image.

An optional graph object can be included as an input (for one, two, or three input 
plots). If the data is compatible, the new data is overlaid on graphObj, and the 
modified graph is returned as a graph object from plot( ). However, a graph object 
can also be referenced with the keep or copy keywords. The keep keyword is 
preferable because it is fastest. In either case, you can reference a single graph 
object. (You can’t specify keep and the optional graph object input in the same 
call.)

If you input the data below, you can test each syntax in the sections that follow:

# define vectors for plotting

v=[0:.25:30]';
vc=v.*cos(v); vs=v.*sin(v); 

# define a PDM

ypdm=pdm([vc,vs]);

# define matrices for plotting
x=[vc,vc]; y=[vs,vs]; z=[1.5*v,1.5*v];
vm=vs*vc';
m=v*v';

1. If you need to plot complex data, you can make a real vs. imaginary cartesian graph. Given 
complex data z, call plot(real(z),imag(z)).
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ms=[vs,-vs];
mc=[vc,-vc];

4.2.1  Plot One Input

For a single argument the syntax is plot(y):

■ If y is a vector with m elements, then y is plotted versus the vector 1:m.

plot(vc)?

■ If y is an m × n matrix, then each column of y is plotted versus the vector 1:m. 
The result is n curves, each with m points.

plot(vm)?

■ If y is an m × n × d PDM where m × n is the size of each dependent matrix, and 
d is the length of the domain (the independent parameter), then m × n curves 
of d points are drawn, each versus domain(y). Therefore, each line 
corresponds to a channel of a PDM (see 5.4.4 PDM Channels, p.194):

plot(pdm([vc,vs]))?

4.2.2  Plot Two Inputs

The syntax for two arguments is plot(x,y):

■ If x and y are vectors of the same length, then y is plotted against x:

plot(vs,vc)?

■ If x is an m × 1 or 1 × m vector and y is an m × n matrix, each of the n columns 
of y is plotted against x on a single graph. Each curve has m points:

plot (vs,m(:,1:7:length(vs)))?

■ If x and y are both m × n matrices, then n curves are drawn, each consisting of 
a column of y versus the corresponding column of x:

plot (m,vm)?

4.2.3  Plot Three Inputs

The syntax for three arguments is plot(x,y,z):
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■ If x, y, and z are vectors of the same length, then z is plotted versus x and y as 
a curve in space:

plot (vc,vs,v/3)?

■ If x is an m × 1 or 1 × m vector, and y is n × 1 or 1 × n, and z is an n × m matrix, 
then z is plotted as a surface versus x and y:

plot (vc(1:50),vs(1:50),vm(61:110,61:110),{!grid})?

■ If x, y, and z are matrices of the same dimensions, then z is plotted versus x 
and y as a surface in space:

plot (mc,ms,z,{!grid})?

4.2.4  Color as a Fourth Dimension

If inputs x, y, and z are supplied and z is a matrix, then you can pass a fourth 
argument to use color to represent an additional dimension over the data surface. 
In the following example, the fourth argument is a matrix the same size as z 
generated by the colorind( ) function (a colorindex matrix). The values specified 
with the face_color keyword are applied to the data surface at the locations in the 
colorindex matrix:

v=[0:.25:30]';
x=v.*sin(v);
y=x;
z=vs*-vs';
z=z(31:60,31:60);
g1=plot(x(1:30),y(1:30),z,colorind(z),{face_color=9:19})

4.2.5  Creating and Displaying a Graph Object

This section discusses common plotting approaches. Keywords mentioned here 
are discussed in detail later in this chapter.

Graph object output is handled like any other function output, except that it is 
displayed in the Xmath Graphics window rather than to the log area. When no 
output is assigned, the graph is written to the default object ans. 

It is a good practice to use the ? terminator with plot( ), regardless of how you call 
it: interactively, in executable files, or in MathScript entities. This is particularly 
important when plots are developed in a .ms file. (By default, set echo is off when 
files are executed so Xmath displays only graphs with the ? terminator.)
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The keep keyword (which is also discussed in 4.3.5 Adding New Data to Existing 
Plots (keep, copy), p.145) combines an existing graph object and any new 
information. If the plots are compatible, the new information becomes part of the 
specified graph. For example:

v=[0:.05:5];
plot(v.*sin(v),{title="The first curve."})?
plot(-v.*cos(v),{keep,title="The second curve."})?

The second curve is plotted over the first; note that plot( ) recognized there was 
already a title and substituted the newest one. You can still add to the graph, and 
this time name the output:

final=plot({ keep, xlog, xmax=100, title="The Final Graph",
legend=["1st curve","2nd curve"]})?

If saving a graph to a variable is an afterthought, you can capture the current 
image in the Xmath Graphics window by selecting File→Bind to variable from the 
Xmath Graphics window menu bar or by calling plot( ) with no arguments:

g2=plot()        # name current graph object g2

Both File→Bind to Variable and Variable=plot( ) do the same thing as 
Variable=plot({keep}).

Once a graph object is assigned to a variable, it can be saved to a file and then 
loaded and displayed at a later time. Rather than creating an executable file that 
recreates the graph, you can archive the images themselves.

4.3  Using Keywords with plot

Every call to plot( ) can have a list of keywords that modify the plot’s appearance. 
Almost everything that can be done using keywords can be done interactively 
with tools available from the Xmath Graphics window menus and the Xmath Palette. 
Keywords, however, are very convenient because they provide command-line 
control of graphics modifications. This implies that plot instructions can be saved 

NOTE:  If you have an observable delay, when you drag a window across an Xmath 
Graphics window, try disabling the Show window contents while dragging checkbox on 
the Control Panel→Display→Plus! tab (Windows NT only).
131



MATRIXX 7.0
Xmath User’s Guide
to and retrieved from a diary file or built up independently in a MathScript file. 
Also, a keyword string may be aliased to a shorter string.

■ Plot keywords, as shown in Table 4-3, are used like any other keywords. As a 
reminder, though, the type of information dictates how the keyword is 
implemented. 

For Boolean scalars, note that a nonzero value denotes TRUE/on, while 0 
denotes FALSE/off. For example:

plot({grid,marker})   # grid and marker are on
plot({!grid,!x_lab}) # grid and x_lab are off

■ If you use the hold keyword, the keyword settings remain until you redefine 
an attribute, until you use !hold, or until you call plot({reset}) (see Hold 
Keyword on p.161).

■ You can use the negative operator ! to set a keyword to FALSE or 0. For 
example, you can use either !grid or grid=0 to turn off all grid marks while 
grid=1 enables them.

Sections 4.3.1 through 4.3.18 discuss keywords in functional groups (see Table 4-4) 
using examples to illustrate how they work. Each keyword description gives its 
default setting. 

Table 4-3 Keyword Types 

Keyword Type Input Samples

Boolean {!legend}, {!axisfix}

integer {rows=5}, {line_color=12}

vector {scale=[.5,.5],line_color=2:24}

string {title="My Beautiful Graph"}

vector of strings {legend=["input 1","input2"]}

Table 4-4 Keyword Categories 

Category Section

Labels and legend 4.3.1

Colors 4.3.2

Line and marker specifications for data 4.3.3
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An alphabetized list of all keywords and the location of each appears in Table 4-5. 

Multiple graphs and graph positioning 4.3.4

Adding new data to existing plots (keep, 
copy)

4.3.5

Axis and zero lines 4.3.6

Tics and grids 4.3.7

Free text and global text settings 4.3.8

Axis limits and logarithmic scaling 4.3.9

Animate 4.3.10

Placement, scaling, and rotation 4.3.11

Background, edge, and face settings 4.3.12

Lighting source settings 4.3.13

Holding graph attributes 4.3.14

Strip plots 4.3.15

Bar plots 4.3.16

Contour plots 4.3.17

Polar plots 4.3.18

Table 4-4 Keyword Categories  (Continued)

Category Section

Table 4-5 Plot Keywords (Alphabetized Listing) 

Keyword Page Keyword Page Keyword Page

animate 155 line_width 140 x_axis_fix 148

axis 135 log 154 x_axis_line 148

axix_fix 148 marker 141 x_grid 150

axis_linea 148 marker_color 141 x_inc 154

bar 167 marker_size 142 x_lab 135
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bg_color 158 marker_style 142 x_log 154

colormap 138 move 157 x_max 154

column 143 polar 170 x_min 154

columns 143 position 157 x_tic 149

contour 168 projection 156 x_tic_lab 150

contour2d 168 r_inc 170 x_zero_line 148

contour3d 168 r_max 170 y_axis 148

contour_interval 168 reset 161 y_axis_fix 148

copy 146 rotate 156 y_axis_line 148

date 135 row 144 y_grid 150

edge 159 rows 144 y_inc 150

edge_color 159 scale 156 y_lab 135

edge_style 159 strip 165 y_log 154

edge_width 159 text 152 y_max 154

face 158 text_angle 152 y_min 154

face_color 159 text_color 152 y_tic 149

face_style 159 text_font 152 y_tic_lab 150

fg_color 146 text_position 152 y_zero_line 148

graph_number 159 text_style 152 z_axis 148

grid 150 text_size 152 z_axis_fix 148

hold 161 theta_inc 170 z_axis_line 148

keep 146 theta_max 170 z_grid 150

keepsubplot 146 theta_min 170 z_inc 154

legend 136 tic 149 z_lab 135

Table 4-5 Plot Keywords (Alphabetized Listing)  (Continued)

Keyword Page Keyword Page Keyword Page
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4.3.1  Labels and Legend

Labels allow you to place a text string in a specific location relative to the plotted 
data. Labels are therefore bound to the plot and their locations cannot be changed. 

The keywords legend, date, and time also place text on the graph, but you can 
move these small text objects with the mouse. (To create “independent” text, use 
the text keywords on p.152, or create free text interactively.) Table 4-6 summarizes 
the labels and legends.

light 160 tic_lab 150 z_log 154

light_color 160 tic_maj 149 z_max 154

light_direction 160 tic_min 149 z_min 154

line 140 time 136 z_tic 149

line_color 140 title 135 z_tic_lab 150

line_style 140 x_axis 148 z_zero_line 148

a Underscores are always optional. For example, both x_axis and xaxis are acceptable.

Table 4-5 Plot Keywords (Alphabetized Listing)  (Continued)

Keyword Page Keyword Page Keyword Page

Table 4-6 Label and Legend Keywords 

Keywords Description

title String for the graph title above the plot. Default is an empty string.

x_lab String for the x-axis label. Default is an empty string.

y_lab String for the y-axis label. Default is an empty string.

z_lab String for the z-axis label. Default is an empty string.

date Places the date in the upper left corner; format is: 
dayName_month_date_year.

Default is an empty string.
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Tic labels (numbers corresponding to major tic marks) are discussed on p.149. 

The example that follows creates 3D data and then creates the contour graph 
shown in Figure 4-1. All axis information is negated so that you can clearly see 
every label (negating axis information is optional). Note the string of vectors used 
to label the legend. There are four intervals in this contour, and this vector of 
strings provides new labels for only the first and last; the default label is 
displayed for intervals where the null string "" is specified.

x=[-2*pi:0.35:2*pi]'; 
x=[x;x];y=x; 
z=sin(round(x))./x*(sin(y)./y)'; 
legetext=["Mt. Everest","","","sea level"]; 
g=plot(x,y,z,{!grid,contour3d, time, date, 

title="Contour Graph", xlab="the x label", 
ylab="the y label", zlab="the z label", 
legend=legetext})?

time Places the time in the upper left corner. Format is hour_minutes_seconds 
on a 24 hour clock. Default is an empty string.

legend For multi-line or contour plots, you can specify a vector of strings naming 
each line or contour, for example, legend =["Time","Speed"]. The 
default labels for 2D plots are the line number followed by the 
corresponding line style (and color, for color monitors). For 3D plots, the 
default legend corresponds to differing surface styles. 

Table 4-6 Label and Legend Keywords  (Continued)

Keywords Description
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4.3.2  Colors

Many keywords take a color as an argument. You can specify colors by number or 
name, and a vector of color names or numbers is acceptable. You can see the 
current colormap on the Xmath Palette. On color monitors, up to 64 colors can be 
allocated. 

If a value is specified (an integer between 1 and 64), Xmath indexes into the 
current colormap. 

If a color name is specified, Xmath searches for a match in the following tables in 
the order shown:

1. The currently installed Xmath colormap. 

For black and white systems, the current colormap simply represents black, 
six shades of gray, and white. On color systems, each row in the colormap is a 
color; the first column represents red intensity; the second, green intensity; 
and the third, blue intensity. 

2. On UNIX systems, the X11 color name database (often stored in /usr/lib/X11/
rgb.txt) 

Figure 4-1 Label Locations and Legend
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This is a very long list.

3. The list of supported Xmath color names (Table 4-7).

The first eight colors on this list compose the default sequence for line and 
marker colors. The first color is black or white (depending on the background 
color), followed by red, green, yellow, blue, magenta, cyan, and black or 
white.

If you use strings to specify these colors, spacing must be typed as shown, but 
case is not important. For example:

plot(x, {bg_color="CADET BLUE",fg_color=51})

4. The list of default (built-in), machine-dependent color names.

As soon as a name match is found in one of the locations above, Xmath looks 
at the corresponding values, compares them to values in the current 
colormap, and then implements the closest color available in the current 
colormap.

To supply your own colormap, construct an n×3 matrix with values representing 
red, green, and blue intensity ranging from 0 to 1. Before installing your color 
map, it’s a good idea to save the default color map:

mapDefault=plot({colormap})

This saves the colormap to the variable mapDefault.

To replace the current colormap with your own mapMyColors, type:

plot({colormap=mapMyColors})

Your colormap now appears in the Xmath Palette as the current colormap. 

For more on colormaps, see the MATRIXX online Help listings for Color List, 
Colormaps, and Color.

Table 4-7 String Color Names for Xmath Supported Colors 

No. Name No. Name No. Name

1 "black" 22 "chris cyan" 43 "aliki aqua"

2 "red" 23 "periwinkle" 44 "cyan"

3 "green" 24 "prussian blue" 45 "cerulean"

4 "yellow" 25 "cadet blue" 46 "big blue"
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The following keywords dictate color changes for different plot elements: 

■ bg_color   

■ edge_color

■ face_color 

■ fg_color

■ grid_color

■ light_color   

5 "blue" 26 "kam blue" 47 "lapis"

6 "magenta" 27 "royal purple" 48 "blue"

7 "cyan" 28 "red violet" 49 "marine blue"

8 "white" 29 "mulberry" 50 "violet"

9 "silly putty" 30 "orchid" 51 "mark magenta"

10 "peach" 31 "maroon" 52 "purple"

11 "salmon" 32 "strawberry" 53 "fuchsia"

12 "brick" 33 "fire engine red" 54 "berry"

13 "kin orange" 34 "orange" 55 "raspberry ron"

14 "burnt umber" 35 "pumpkin" 56 "red"

15 "brown" 36 "golden dawn" 57 "black"

16 "coffee" 37 "yellow" 58 "gray5"

17 "mustard" 38 "lemon yellow" 59 "gray4"

18 "neon green" 39 "light green" 60 "gray3"

19 "forest green" 40 "algae" 61 "gray2"

20 "teal" 41 "grant green" 62 "gray1"

21 "ocean green" 42 "new grass" 63 "gray0"

64 "white"

Table 4-7 String Color Names for Xmath Supported Colors  (Continued)

No. Name No. Name No. Name
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■ line_color

■ marker_color 

■ text_color

The meanings of these keywords are discussed elsewhere within the keyword 
functional groups.

4.3.3  Line and Marker Specifications for Data

You can change the color, style, and width for lines (for example, curves) of data 
as specified in Table 4-8. If you make changes to lines and specify the legend 
keyword, your changes are reflected in the legend.

 Table 4-8 Line Specification Keywords 

Keyword Description

line Boolean that turns line plotting on or off. Default=1.

line_color Integer, string, vector of integers, or vector of strings for specifying data 
line colors (see 4.3.2 Colors, p.137). If line_color specifies a vector, the 
given color sequence is cycled through. On color monitors for plots 
with multiple curves, Xmath automatically assigns each curve a 
different color.

line_width Any float is accepted. The variety of line widths allowed is machine 
dependent; if you specify a value the machine can’t provide, it supplies 
the closest thing. The default value of 1 is approximately equal to 1 pixel 
on your monitor. On a high resolution monitor, the difference between 
.5 and 1 may be visible; on others the output might be the same.

line_style Integer, vector of integers, string, or vector of strings that specify line 
styles for each curve on the graph. The line_style mapping is:

Integer String
0  "    "
1  "----"
2 "- - "
3 "...."
4 "-.-."
5 "-..-"
6 "-..."
7 "-- --"

If line_style is set to a vector of integers, strings, or names, Xmath 
cycles through the specified sequence of styles.
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The following example generates several line styles and widths; the plot appears 
in Figure 4-2:

v=[0:2/7:20]';vc=v.*cos(v); 
x=[vc,vc*2,vc*4,vc*6];
plot (x,{legend, line_width=[8,6,4,2],line_style=[4,3,2,1],

line_color=["peach","teal","lapis","purple"]})

Markers, as described in Table 4-9 are symbols plotted at each data point. You can 
change a marker ’s size, style, or color using integers, floats, or strings the same as 
you do with line styles. To see a plot with only markers, use the keywords 
{!line,marker}.

Figure 4-2 Line Styles and Widths

Table 4-9 Marker Specification Keywords 

Keyword Description

marker Boolean that turns on/off plot markers. Default=0. 

marker_color Integer, vector of integers, string, or vector of strings that specifies 
marker color (see 4.3.2 Colors, p.137). You can specify an integer or 
string for each curve on a graph. If a vector is specified, the color 
sequence is cycled through. 
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You can use a combination of line styles and markers to expand the number of 
unique lines you can plot. This is especially valuable for those using black-and-
white monitors or for complicated plots that will be printed in black and white.

a=1:9; b=ones(9,9);for i=1:9; b(i,:)=a;endfor
plot({!grid,!x_axis,y_inc=1,axisfix,hold})

plot(b,{columns=2,
line_width=[.5, 1, 2, 3.5, 4, 5.5, 6.5, 7, 7.5]})?

g=plot(b,{keep,column=2,!line,marker_size=[.25, .5,
.75, 1, 1.5, 2.25, 2.25, 2.5, 2.75]})

plot({reset})

The final result, Figure 4-3, shows some of the line and marker styles in a variety 
of widths and sizes. Normally hold and axisfix need to be turned off with !hold 
and !axisfix, but plot({reset}), which resets everything, is used in this example.

marker_size Any nonzero float is accepted. The range of marker sizes allowed is 
machine-dependent; if you specify a value the machine can’t 
provide it will supply the closest thing. The default value is 0.5. 

marker_style Integer, vector of integers, string, or vector of strings that specifies 
marker style for each curve on the graph.
The marker style mapping is:

Integer String Style
0 "  " no markers
1 "*" asterisks 
2 "x"  x’s 
3 "+" crosses
4 "o" circles 
5 "(*)" filled circles 
6 "[]" squares 
7 "[*]" filled squares 
8 "/\\" triangles 
9 "/*\\" filled triangles 

The default marker style is 1. If a vector of marker styles is specified, 
they will be cycled through.

Table 4-9 Marker Specification Keywords  (Continued)

Keyword Description
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4.3.4  Multiple Graphs and Graph Positioning

The keywords shown in Table 4-10 allow you to place more than one plot in the 
Xmath Graphics window. If you are displaying multiple graphs, you can ensure 
that they are the same size by dividing the window into rows and/or columns 
and then positioning the graphs with row and column coordinates or graph 
number. You cannot rotate or zoom plots with multiple graphs interactively.

Figure 4-3 Line and Marker Styles with Varying Widths and Sizes

Table 4-10 Graph Specification Keyword 

Keyword Description

column Integer specifying the column position of the graph. Default=1. 

columns Integer specifying how many columns the plot window is divided 
into. Default=1.

row Integer specifying the row position of the graph. Default=1.
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Note that the keywords row, rows, column, and columns all default to 1. 
Therefore, you needn’t specify row=1 or column=1 because Xmath attempts to 
place graphs in these locations by default. The keywords rows and columns are 
initiators. If they are used in a plot( ) call, the row/column setting remains in effect 
for subsequent plots that use the keywords row, column, or graph_number. If a 
plot is called that does not contain row, column, or graph_number, the default 
format ({rows=1,columns=1}) is reset.

The following example places six graphs in the window; the final plot appears in 
Figure 4-4.

v=[0:.25:20]';
vc=v.*cos(v);
x=[vc,vc*2,vc*4,vc*6,vc*8,vc*10];
g=plot (x,{rows=2,columns=3}) #assume row 1 col 1
g=plot (vc*2,{keep=g,column=2}); #assume column=1
g=plot (vc*4,{keep=g,column=3}); #assume row=1
g=plot (vc*6,{keep=g,graph_number=4});
g=plot (vc*8,{keep=g,graph_number=5});
g=plot (vc*10,{keep=g,graph_number=6})?

rows Integer specifying how many rows the plot window will be 
divided into. Default=1.

graph_number Integer specifying alternate representation for row and column in 
a multi-graph plot. For rows=m and columns=n, the “cells” are 
numbered from 1 to m ¥ n going across the rows and then down 
the columns. Thus, for rows=2 and columns=2, 
graph_number=3 is equivalent to row=2, column=1.

Table 4-10 Graph Specification Keyword  (Continued)

Keyword Description
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4.3.5  Adding New Data to Existing Plots (keep, copy)

Xmath has two ways of storing the image in the Xmath Graphics window in a 
variable. The keywords keep and copy described in Table 4-11 both use the 
contents of the Xmath Graphics window, but they may affect previously saved 
variables differently. 

Keep combines the attributes and data from your current plot call with the current 
contents of the Xmath Graphics window and updates the variable. Keep is best 
used when you are building a plot by overlaying data or adding attributes to an 
existing plot. Because keep uses whatever is in the Xmath Graphics window, Xmath 
keeps changes you make with interactive tools automatically.

If you create a graph object g1 and later create a graph object g3 that keeps g1, a 
common incorrect perception is that g1 has the old view and g3, the new. In 
reality, both variables point to the same graph object. You can test this as follows:

v=[1:.25:30]';vs=abs(v.*sin(v));vm=vs*vs';
g1=plot(vs,v)

g2=plot(vs(1:30),vs(1:30),vm(61:90,61:90))

Figure 4-4 Plots Placed with row, column, and graph_number Keywords
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g3=plot({keep=g1,log})

g1

where g1 and g3 are the same. 

As long as the data dimensions allow it, Xmath performs any keep you specify. 
For example, you can combine a 2D and 3D plot. The following example uses the 
keep keyword to specify a 2D plot and provides the 3D information internally: 

plot(vs(1:30),vs(1:30),vm(61:90,61:90),{!grid,keep=g3,
ylab="The Y label",xlab="The X label",
zlab="The Z Label"})

If you want to re-use a graph object but you don’t want it to be altered, use the 
keyword copy instead of keep (see Table 4-11 for these keyword descriptions). For 
example, g1 and g2 remain different in this case: 

g2=plot({copy=g1,legend})

g1

Copying is computationally expensive, but it means you can save each stage 
when building a plot.

 Table 4-11 Data Keywords 

Keyword Description

keep Specifies that the current plot should be added to the specified graph 
object. If no graph object is specified, the plot is combined with the 
current contents of the Xmath Graphics window. If the graphs are 
incompatible, the new plot overwrites the Xmath Graphics window.

keepsubplot Boolean. Used with keep when adding or replacing data on a subplot. 
keepsubplot indicates that new data should be laid over the existing 
data on the subplot. !keepsubplot indicates that the subplot should 
contain only the new data. Default is 1.

copy copy can be specified with a graph object argument {copy = 
GraphObj}; if no graph object is specified, the plot is combined with 
the current contents of the Xmath Graphics window. copy differs 
from keep in that copy does not alter the original graph object. In this 
case, the new data and graph keywords are combined with a copy of 
the existing graph object. The combined graph object is returned, 
while the copied graph object remains unchanged.
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Figure 4-5 shows an example created by combining graph objects through the 
sequence of inputs below. By default, if graph objects with different data ranges 
are combined, Xmath rescales the plot to accommodate all the data. As you create 
each plot below, notice how the axes change to accommodate the new data with 
each curve addition.

v=[0:.25:20]; vc=v.*cos(v);vs=v.*sin(v);
plot({title="You can add to a graph as you work!"})?

plot(vc,{keep})?

plot(vs,{keep})?

plot(-vc,{keep})?

plot(-vs,{keep})?

g=plot({keep,!grid,legend=[" vc"," vs","-vc","-vs"]})?

If you do not want the plots rescaled, you must specify one of the axisfix 
keywords (see Table 4-12).

Figure 4-5 Combination of Graph Objects
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4.3.6  Axis and Zero Lines

The keywords described in Table 4-12 control axis and zero-line display.

The following call produces the zero lines and axes for 2D and 3D plots shown in 
Figure 4-6. This demonstrates axis and zero lines in 2D and 3D plots.

plot(sin(-5:.2:5),{columns=3,!grid,
title="2D Axis Lines and Zero Lines"})

plot(0,0,0,{column=2,!axis,title="3D Zero Lines"})
plot(0,0,0,{column=3,!zero_line,title="3D Axis Lines"})?

Table 4-12 Axis and Zero Line Keywords 

Keyword Description

axis Boolean that turns on or off all axis graphics on the entire graph. This 
includes grids, zero lines, tic marks, and tic labels. If an attribute is 
specified, it is applied to all axis graphics.

x_axis
y_axis
z_axis

Booleans that toggle all axis graphics on the x, y, or z axis. 

Axis graphics color, style, and width attributes affect all components 
on the named axis. 

axisfix
x_axisfix
y_axisfix
z_axisfix

Booleans that toggles automatic axis scaling when graph objects are 
combined. Default=0 (autoscaling on). If axisfix=1, axis limits are 
those of the kept graph object. 

axis_line Boolean that toggles lines for all axes. Default=1.

x_axis_line
y_axis_line
z_axis_line

Booleans that toggle axis line for the x, y, or z axis, respectively. 
Default=1.

zero_line Boolean that toggles zero lines on all axes. Default=0.

x_zero_line
y_zero_line
z_zero_line

Booleans that toggle zero lines on the x, y, or z axis, respectively. 
Default=0.
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4.3.7  Tics and Grids

Tics and grids appear by default on all plots. You can suppress these features on 
one or more axes. Table 4-13 describes the keywords grid, tic, and tic_lab which 
are especially useful because they control all axes. 

 

Figure 4-6 Zero Lines and Axes for 2D and 3D Plots

Table 4-13 Tic and Grid Keywords 

Keyword Description

tic Boolean that toggles tic marks on all axes. Default=1.

tic_maj Boolean that toggles major tic marks on all axes. Default=1.

tic_min Boolean that toggles minor tic marks on all axes. Default=0.

x_tic
y_tic
z_tic

Booleans that toggle tic marks on the x, y, or z axis, respectively. 
Default=1. 
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The following instructions produce the changing tic and grid setting shown in 
Figure 4-7.

v=[[1:.15:15],[15:-.15:1]];
vc=[v.*cos(v)];vs=[v.*sin(v)];
vc5=vc.*.[ 2;2.5;2.75;2.5;2];
vs5=vs.*.[ 1;1.5;2;1.75;1.25];
plot(-vc5,vc5,vs5,{yinc=30,xinc=15,!zgrid})

x_inc
y_inc
z_inc

Integers specifying the major tic increment for the x, y, or z axis, 
respectively. 

tic_lab Boolean that toggles tic mark numbering on all axes. Default=1.

x_tic_lab
y_tic_lab
z_tic_lab

Booleans that toggle tic mark numbering on the x, y, or z axis, 
respectively. Default=1.

grid Boolean that toggles all grids. Default=1.

grid_color
grid_style
grid_width

Grid color, style, and width attributes can be changed for the entire 
graph. Colors are specified as described starting on p.137. Line styles 
and widths are specified as described on p.140.

x_grid
y_grid
z_grid

Booleans that toggle the x, y, or z grid, respectively. Default=1.

Table 4-13 Tic and Grid Keywords  (Continued)

Keyword Description
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4.3.8  Free Text and Global Text Settings

The text keyword places a single string onto the plot. You can alter the angle, 
color, font, position, size, and style of the string with keywords (see Table 4-14). 

The text keyword loosely corresponds to the interactive free text feature. If you 
want to add more than one text string to a plot or show a variety of text styles, 
you can work on the plot interactively or combine several plots with the keep 
keyword. Text keywords do not affect text associated with the data, such as labels 
and titles. You can change these interactively, or, in the case of labels, with 
keywords.

Figure 4-7 Changing Tic and Grid Settings
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 Table 4-14 Free Text and Global Text Keywords 

Keyword Description

text String containing the text to be written on the plot.

text_angle Vector of three float numbers [x,y,z] specifying the angle of the 
text’s clockwise rotation about the axis.

text_font Integer or a string from the following:

Integer String
1 "simplex"
2 "duplex"
3 "triplex"
4 "complex"
5 "script"
6 "greek"
7 "times"
8 "helvetica"
9 "courier"

Fonts 1 through 6 are Hershey fonts, while fonts 7, 8, and 9 are 
PostScript fonts. The default font (font=8) is Helvetica.

If your platform is not be able to create the font you want in the 
size you want, it attempts to supply the closest thing. 

text_color Integer or string indicating the color name. Specifies the color for 
all text in the graph. Default="black". See p.138.

text_position Vector of two float numbers [x,y] used to place a line of text 
anywhere in the Xmath Graphics window. The upper left corner of 
the text line is placed at the specified position. When first drawn, a 
plot extends from -1 to +1. Note that any float is acceptable, so it is 
possible to position the text outside the viewport. If you do, it may 
seem as though the string was not created; you must zoom out to 
view the text. Default= [0,0]. 

text_size Floating-point number specifying the size in points. One point is 
about 1/72 inches.

text_style Integer or string indicating the text style:

Integer Font
1 "plain"
2 "bold"
3 "italic"
4 "bold italic"

Default is 1 (plain).
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The following example uses text keywords; it produces the plot shown in 
Figure 4-8. Note that text_position and position work on the same principle.

v=[0:.5:25]'; vc=v.*cos(v); vs=v.*sin(v); vm=vs*vc'; plot(v,v,vm) 
plot({keep, scale=[.9,.9],position=[-.4,0], 

x_inc=5,y_inc=10,  
text="Text is placed with "ntextposition"+... 
""n and textangle.", 
text_font=3,text_size=14,
text_angle=[0,0,30], 
text_position=[.1,-.7]})

4.3.9  Axis Limits and Logarithmic Scaling

You can change the actual scaling of the data (to log scale, for example). You can 
also specify the minimum and/or maximum range of data you want to see on any 
dimension (see Table 4-15 for the pertinent keyword descriptions).

Figure 4-8 Text Changes and Text String Placement
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You can make an axis go backward by making the value of xmin greater than 
xmax as illustrated in the following example:

x=exp(.5:0.15:5);
plot(x,{x_log,rows=3,xmax=32})
plot(x,{keep,row=2,y_log,ymax=150})
plot(x,{keep,row=3,xmin=35,xmax=1,title="Reversed Scaling"})

The results appear in Figure 4-9.

Table 4-15 Axis Limits and Logarithmic Scaling Words 

Keyword Description

log Turn on/off log scaling for all axes. 

Default=0.

x_log
y_log
z_log

Turn on/off log scaling for the specified axis. Default=0.

x_min
y_min
z_min

Integer indicating the minimum for the x, y, or z axis, respectively.

x_max
y_max
z_max

Integer indicating the maximum for the x, y, or z axis, respectively.

x_inc
y_inc
z_inc

Integer indicating the increment for the x, y, or z axis, respectively.

For logarithmic axes, this value becomes multiplicative. This means that if 
the integer is greater than 1, it increases by multiples, and if it is less than 1, 
it decreases by multiples. So if x_inc=10, tic values are 1,10,100, etc. If 
x_inc=0.1, values are 1, 0.1, .01, etc.
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4.3.10  Animate

The animate keyword allows you to plot new data without redrawing other parts 
of the plot. It is a Boolean used to show changes in data as quickly as possible for 
an animation effect between successive plots. Default=0.

The following example plots a series of curves on the same axes. The first plot sets 
the dimensions of the plot; the second plot holds the dimensions of the first and 
specifies that only the data will be redrawn each time. The curves are plotted 

Figure 4-9 Axis Maximums and Minimums
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within a loop and then animate is turned off. Alternatively, plot({reset}) could be 
used to restore the original settings.

a=[0:20/75:20];a=a.*cos(a);
b=[10:-10/75:0];b=b.*sin(b); c=[a,b];
plot ({animate,ymin=-85,ymax=85,xmax=150});
for i=[[1:.25:5],[5:-.25:100]];
plot(c*i,{linestyle=1})?
endfor
plot({!animate})

4.3.11  Placement, Scaling, and Rotation

The placement, scaling, and rotation keywords operate on a graph as a whole (see 
Table 4-16 for descriptions). This means scale changes reduce or enlarge the entire 
graph, including labels, and so forth. The keywords, rotate, projection, and 
position, also operate on an entire graph. You can use these keywords when 
plotting a single graph or multiple graphs (4.3.4 Multiple Graphs and Graph 
Positioning, p.143).

Table 4-16 Placement, Scaling, and Rotation Keywords 

Keyword Description

scale Vector of two float numbers [x,y]. Each float indicates the amount of 
compression (float < 1) or expansion (float >1) on the relevant x or y 
Xmath Graphics window coordinate. Default is [1,1].

rotate Vector of three float numbers [x,y,z] specifying the angle in degrees of a 
3D plot’s rotation. Assumes a right-hand coordinate system, based on 
the Xmath Graphics window axes (not the object coordinates). 
Rotations are performed counter-clockwise, first about the x-axis, then 
about the y-axis, then about the z-axis. Because this rotation is based on 
window coordinates (the current view), it may be simpler to rotate one 
axis at a time.

projection String equal to one of the following string values:

"stretched" 

Stretches the graph so that it fills as much of the plotting area as 
possible. This is the default projection for 2D graphs.

"orthographic" 

Indicates a coscaled setting such that unit distances on all axes are 
equal. This is the default projection for 3D graphs.
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The following example uses scaling, rotation, and projection, and the 
text_position keyword, which works much the same as position does. This 
example creates the projection shown in Figure 4-10.

x=[-2*pi:0.35:2*pi]';
x=[x;x];y=(x); z=sin(round(x))./x*(sin(y)./y)';

v=[0:.5:20]';vs=v.*sin(v);vm=vs*vs';
plot (x,y,z,{columns=2,scale=[1,.9],rotate=[-20,0,0],
projection="stretched"})?

g=plot (x,y,z,{keep,column=2,projection="orthographic",
text="Stretched and Orthographic Projections",
text_position=[-.35,-.9]})?

move Vector of two float numbers [x,y] specifying the distance (in Xmath 
Graphics window coordinates) to move the object from its current 
position. [-1,-1] is the lower left corner, [1,1] is the upper right corner, 
and [0,0] is the center of the window.

position Vector of two float numbers [x,y] specifying the Xmath Graphics 
window coordinates of the center of the graph object. Default is [0,0] 
(the middle of the window). [-1,-1] is the lower left corner, and [1,1] is 
the upper right corner.

Table 4-16 Placement, Scaling, and Rotation Keywords  (Continued)

Keyword Description
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4.3.12  Background, Edge, and Face Settings

Figure 4-10 Stretched and Orthographic Projections

Table 4-17 Background, Edge, and Face Setting Keywords 

Keyword Description

bg_color
fg_color

Specifies the Xmath Graphics window background or foreground 
color. Accepts an integer or a string (see p.138).

face Boolean that turns surface filling on 3D surfaces or bar plots on or off. 
Default=1.
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face_style Changes the style on all faces. Specify an integer corresponding to the 
desired style from the following list:

Integer Face Style
0 none (default)
1 solid
2 cross-hatched pattern
3 vertical-line
4 horizontal-line pattern 
5 left-slanting diagonal pattern 
6 right-slanting diagonal pattern 
7 dotted pattern 
8 diamond pattern 
9 square pattern

NOTE: For black and white monitors, the face styles are only shown if 
the face color is black or white. If you specify a shade of gray 
and a face style, you only get gray.

face_color Specifies the color of 3D surfaces based on the z data values. 
Acceptable inputs are an integer, a vector of integers, a string, or a 
vector of strings (see p.138). If you specify a vector, Xmath cycles 
through the given sequence.

edge Toggles the display of web lines on 3D surfaces or bar plots. Default=1.

edge_color Specifies the color of the web lines on 3D surfaces or bar plots. 

Acceptable inputs are an integer, a vector of integers, a string, or a 
vector of strings (p.138). If you specify a vector, Xmath cycles through 
the given sequence.

edge_style Sets the style of all web lines. This keyword accepts an integer or a 
string equivalent indicating the border line type. 
Default=1 (a solid line). Allowed values are:

Integer             String
0    " "
1      "----"
2     "- -"
3     "...."
4     "-.-." 

edge_width Sets the width of all web lines. This keyword, like line_width, accepts 
any floating point number. 

Table 4-17 Background, Edge, and Face Setting Keywords  (Continued)

Keyword Description
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The following example displays a variety of edge and face specifications.

x=logspace(1,180,90);y=logspace(90,270,90);
z=45:134;
a=[-x;x;-x;x];b=[y;-y;-y;y];c=([z;z;z;z]);

plot(a,b,c,{edge_width=2,
face_style=7,!grid,!axis,bg_color="gold",
edge_color="black",face_color="cyan"})

The graph appears in Figure 4-11.

4.3.13  Lighting Source Settings

 

Figure 4-11 Edge and Face Styles

Table 4-18 Lighting Source Setting Keywords 

Keywords Description

light Boolean that turns light source on or off. Default=0.

light_color Integer (color number) or string (color name) specifying light 
source color. Default="white".

light_direction Vector of three real numbers [x,y,z] indicating the direction in 
which the light travels. Light source location is assumed to be 
infinitely far away. The default path vector is [1,-1,3].
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Setting light= 1 for the plot shown in Figure 4-11 produces a very different graph 
(see Figure 4-12)

4.3.14  Reusing plot Attributes

Hold Keyword

Figure 4-12 Edge and Face Styles with Light Added

Table 4-19 Holding Graph Attributes 

Keyword Description

hold Boolean. When {hold} is used with other keywords it makes them 
‘permanent’, applying them to all future graphs until hold is terminated 
with plot({!hold}). Note that {!hold} removes keywords specified by the 
most recent hold. When you invoke hold in numerous plot calls, a hold 
stack is formed. You can specify a negative integer as an argument to hold 
({hold =-n}) to remove the last n hold invocations from the hold stack. Use 
plot({reset}) to clear the entire hold stack. (Default=0)

reset Resets plot options to their startup values. Use this keyword alone, that is, 
plot({reset}).
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You can use plot attributes, such as line widths, the legend, and titles, with the 
hold keyword, but you cannot use plot types (strip, bar, contour, and polar) with 
hold. When you use an attribute with the hold keyword, it replaces the current 
default. The following example uses the hold stack:

v=[0:.3:20]';vs=v.*sin(v);
plot(v,vs,{hold, time, date, legend,

title="Top Secret Project", scale=[1,.95]})

plot([-vs,-vs],[v,v],{hold,scale=[1,.95]})

plot(v+12,vs,{!hold})

plot([-vs,vs],{!hold})

You can see the results of each of these four plots in Figure 4-13 and Figure 4-14.
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Figure 4-13 Results of First and Second plot Commands Using hold
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Figure 4-14 Results of the Third and Fourth plot Commands Using !hold
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Using an Alias in the Keyword String

Another way to reuse plot attributes is to create an alias. You can then use the 
alias in the keyword string. An advantage of using an alias is that the defaults are 
not affected. You can store the aliases you use frequently in your startup.ms file. 

You can obtain the results we achieved with the hold keyword with an alias:

alias XX time,date, title="Top Secret Project",scale=[1,.95], legend
plot([-vs,vs],{XX})

This example reproduces the fourth plot command above (see Figure 4-14).

4.3.15  Strip Plots

The strip keyword is an integer indicating the number of data lines to be plotted 
on each strip plot in a given set.

The default is 1; Xmath plots one strip per channel or column of data for up to 10 
strips. After 10, strip adds data to the existing strips.

If a value n is specified, Xmath creates strip plots with n data lines per strip plot. If 
the number of lines is not evenly divisible by n, the data lines corresponding to 
the remainder are lost.

Xmath creates strip charts such that the first data line appears on the first strip 
chart, the second appears on the second strip chart, and so on until each strip in 
the first cycle has a data line. All the lines in the first cycle have the same line 
style. Xmath draws the second cycle of lines with a different line style. You can 
interactively modify line styles, colors, markers, and so forth (see Interactive 
Xmath Graphics Window on p.171). When you alter a data line, Xmath also changes 
all lines in that cycle. Note, however, that changes that do not affect data (for 
example, grid lines) are not passed to other strips.

By default, strip plots are laid out as follows:

■ plot(y,{strip=N}) where y is an (m × n) matrix and n is an integer multiple of N. 
Strips are arranged as an ((n/N) × 1) matrix of plots. Each strip contains N 
graphs.

NOTE:  The rows and columns keywords are a special case and cannot be explicitly 
used with the hold keyword (see p.144). Because they are initiators, they are 
automatically held until a plot call is made that does not contain the row or column 
keyword.
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■ plot(y,{strip=N}) where y is an (m × n × T) PDM and m is an integer multiple of 
N. The results are an ((m/N) × n) plot matrix. (Think of the PDM as a column 
vector of blocks.)   Each subplot contains N graphs.

■ plot(y,{strip,columns=m,rows=n}) where y is a matrix with N columns and N is 
an integer multiple of m × n. This syntax creates an (m × n) plot matrix that is 
filled with graphs rowwise. The number of data lines in each subplot is N. 
This option is very handy because it precludes having to write a nested loop 
to fill in a matrix of plots. 

■ plot(y,{strip,columns=m,rows=n}) where y is an (m1  ×  n1  ×  T) PDM and m1  × 
n1 is an integer multiple of m × n. The result is identical to that obtained by 
plotting makematrix(y) with the same keywords. When used with columns=1, 
this syntax specifies a column of strip plots instead of a matrix of strip plots.

To demonstrate strip plots, load the following file:

load "$XMATH/demos/sys.xmd"

This file contains sys, a lightly damped mechanical system that inputs two forces 
and outputs two positions. It is discrete, sampling at 1 second. For this example, 
we use this data to create a system with a sampling rate of 1 second and named 
inputs and outputs:

sysd=system(sys,{dt=1,inputNames=["Force 1";"Force 2"], 
outputNames=["Position 1";"Position 2"]});

Obtain a frequency response of the new system.

f = [1:200]/400; gd=freq(sysd,f);

Create a continuous version of this system and create a frequency response for it:

sysc=makecontinuous(sysd); gc=freq(sysc,f);

Plot the continuous and discrete systems.

plot(abs([gd;gc]),
{xlog,ylog,strip=2,legend=["Discrete";"Continuous"],!grid})?

The results of this example appear in Figure 4-15.
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4.3.16  Bar Plots

The bar keyword is a Boolean used to indicate that the current plot is a bar plot. 
Each coordinate is plotted as the center of a bar whose height is the y or z 
coordinate. Default=0.

plot(logspace(1,10,13),{bar,face_style=5,!x_grid})

This plot appears in Figure 4-16.

Figure 4-15 Frequency Responses
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4.3.17  Contour Plots

A contour plot is a 3D plot that shades portions of the plot based on the z data 
values; the effect is like a topographical map. You can use a legend to show which 
value ranges correspond to the color or fill pattern shown in the contour plot. If 
you specify the keyword face_color and supply a vector of colors, those colors will 
be used to shade the data values. 

Figure 4-16 Bar Plot

Table 4-20 Contour Plots Keywords 

Keywords Description

contour
contour2d

Booleans used to indicate that the current 2D plot is a 
contour plot. Requires x, y, and z data. Default=0.

contour3d Boolean used to indicate that the current 3D plot is a 
contour plot. Requires x, y, and z data. Default=0.

contour_interval Float value which can be used with contour or contour3d 
to determine the intervals of the contour plot. Defaults to 
the internally calculated tic label values of the z data. 
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The following instructions produce Figure 4-17:

v=[0:.5:7]'; 
vc=v.*cos(v); vs=v.*sin(v); vm=vs*vc'; 
plot(vc,vs,vm,{rows=2,columns=2,contour2d,!grid})
plot(vc,vs,vm,{keep,row=2,contour2d,!grid,

contour_interval=1.3})
plot(vc,vs,vm,{keep,column=2, contour3d,!grid})
plot(vc,vs,vm,{keep,row=2,column=2,contour3d,

!grid,contour_interval=1.3,!z_tic_lab})

4.3.18  Polar Plots

The polar plot option draws a 2D plot on a polar grid. Polar plots require a radius 
(magnitude vector) and an angle vector in degrees (theta): 

plot(radius,theta,{polar})

Figure 4-17 3D Contours with Different Intervals
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The following instructions produce Figure 4-18.

t=[logspace(1,180,32);logspace(90,270,32);
logspace(180,360,32);logspace(360,540,32)];

plot (t,t,{polar,!x_grid,r_inc=90,
theta_inc=10,marker})

Table 4-21 Polar Plot Keywords 

Keywords Descriptions

polar Boolean used to make the current 2D plot a polar plot. Default=0.

r_inc Integer specifying the polar radius increment value to be marked on the 
vertical axis of the polar plot.

r_max Integer specifying the maximum polar radius to be plotted on a polar 
plot.

theta_inc Integer specifying the polar angle increment value to be marked around 
the circumference of the polar plot.

theta_min
theta_max

Integer specifying the minimum or maximum polar angle increment to 
be marked around the circumference of the polar plot.
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4.3.19  Clearing the Xmath Graphics Window

To clear the Xmath Graphics window, type ERASE in the Xmath Commands window 
command area.

4.4  Interactive Xmath Graphics Window

The Xmath Graphics window displays Xmath plots and other graphics. It is 
typically opened and updated whenever plot( ) (or a function that calls plot( ), 
such as bode( )) is invoked. It provides extensive interactive facilities for building, 
modifying, and viewing two-dimensional (2D) and three-dimensional (3D) 
graphics. You can specify graph characteristics, such as labels, placement, and 

Figure 4-18 Polar Plot
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size, as keywords to plot( ), or you can add or modify them interactively from the 
Xmath Graphics window menus or the Xmath Palette.

Graphs are composed of objects such as lines, labels, markers, and axes. Object 
attributes can be prespecified as keywords when the plot command is issued from 
the Commands window command area. (Keyword usage is discussed in 4.3 Using 
Keywords with plot, p.131.) You can also manipulate an object’s attributes 
interactively from the Xmath Graphics window’s menus or toolbar or from the 
Xmath Palette. Figure 4-19 shows the graphics environment on UNIX platforms.
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Figure 4-19 Xmath Graphics Environment (UNIX Platform)
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In the example shown in Figure 4-19, the graph originated with a plot( ) function 
call in the Xmath Commands window command area:

v=[0:.1:25]';vc=v.*cos(v);vs=v.*sin(v); 
plot(vc,vs)?

plot(-vc,-vs,{keep,!grid,
legend=["positive","negative"], 
xlab="Keep allows you to combine graphs.",
title="Use tools to alter or add to a graph."})

Note that two plots were combined using the keep keyword (see p.130). 
Graphical additions (the arrows, for example) were created with tools from the 
toolbar. New objects (for example, the timestamp and datestamp) were added 
from the Options menu in the Xmath Graphics window. The mouse was used to 
select and position objects (for example, the legend, timestamp, and the 
datestamp). 

4.4.1  Working Interactively

The most common approach is to start with a graph and then use interactive tools 
to alter it to your satisfaction.

■ To make interactive changes, first click on an object to select it. 

Xmath selects the closest object to the mouse-click. When you select text, 
round handles appear on the corners of the text box. When you select a line or 
curve, it is highlighted and has a thicker appearance. 

When you make a selection, the appropriate attributes are enabled for both 
the Xmath Palette and the Xmath Graphics window menus. For example, when 
the background is selected, the Xmath Palette shows that only the fill patterns 
are available (line and marker styles are disabled, and the Fills button is 
pushed). If a label is selected, the Font and Point menus become available in 
the Xmath Graphics window; in the Xmath Palette, the Text button is pushed. You 
can then change the font and point size from the Xmath Graphics window and 
select a new color from the Xmath Palette. 

■ Place the pointer over an object and drag to move objects. 

You can also use pulldown menus to modify and move selected objects, make 
global changes (zooming, rotating, and so forth), or add objects (via the Options 
menu). Click on an object to select it. When you pull down the menus, only the 
items appropriate for the object selected are displayed. 
174



4

4
Graphics
4.4.2  Toolbar

The toolbar appears in the Xmath Graphics window by default. This feature 
provides quick mouse access to simple graphical drawing tools and the zoom and 
rotate tools. To toggle the toolbar off and on, select Options→Icon Bar (UNIX only). 
Figure 4-20 shows the toolbar in both UNIX and Windows and shows labels for 
each tool. 

Selection Arrow

You use the selection arrow to reset the cursor to selection mode after you use a 
drawing or text tool.

Text Tool

To use the text tool, click on the Text Tool toolbar button. You receive an I-beam 
cursor. Move to the graph area and click. An empty text box appears; you may 
start typing. The text box expands as you type. To create a paragraph (continuous 

NOTE:  Note that not all tools are enabled for all plot types. In general, zooming 
and rotation are disabled for all multiple graph plots (such as strip plots).

Figure 4-20 The Toolbar (UNIX and Windows)
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lines of text) press Return and keep typing. To start a new string, click in a different 
place. To turn off the text tool, click the selection arrow or another tool.

The key commands described in Editing Text by Selecting, Copying, and Pasting on 
p.20 are also active in the text box. Note that the font and size in the text box are 
not what is displayed in the graph. Figure 4-21 demonstrates this in the center text 
piece. To edit existing text, click the Text Tool toolbar button, and then click in the 
text; the text box reappears. Note that the changes you make are not displayed 
until you click the selection arrow (or another tool).

To format text, select it, and then choose a font style and point size from the Font 
and Size menus on the Xmath Palette; you can also enable checkboxes for bold and 
italic font. To change text color, select the text, and then select a color from the 
Xmath Palette. Figure 4-21 shows reversed text created with a text string and a 
graphical object.

Drawing Tools

The line tool, rectangle tool, ellipse tool, arc tool, and arrow tool are primitive 
drawing tools that allow you to draw in the Xmath Graphics window. When you 

Figure 4-21 Using the Text Tool and the Xmath Palette
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use drawing tools, they remain active until you choose the selection arrow or 
another tool. To use a tool, click on the desired toolbar button; a crosshairs cursor 
appears. Press down MB1 and drag until the desired shape is formed; then release 
MB1.

Zoom In/Zoom Out

To zoom in on a graph, click the toolbar button with the larger image on the left. 
Position the mouse over your plot; then click and drag to create a box around all 
or a portion of the graph; the area captured in your box is enlarged to fill the 
Xmath Graphics window. Every time you zoom in, the previous view is saved on a 
stack. 

You can use Zoom Out toolbar button (the toolbar button with the smaller image) 
to undo a series of enlargements. If you zoom out when you are at the default 
view, the graph is reduced by approximately 10%.

The zoom feature is disabled for multiple graph plots. 

Rotation Tools

Rotation is only allowed with 3D plots and other contour plots. The first rotation 
tool allows rotation on all axes. The other tools are constrained to rotate only in 
the directions indicated by the arrows. Select a tool, and then move the cursor to 
the plot area. Press down MB1, and slowly drag the cursor in the direction 
allowed. The data disappears and you see the plot axes turning in response to 
your mouse movement; when the axes are in the position you wish to view the 
plot, release MB1, and the data is redrawn. To return to the original graph, select 
View→Reset.

Consider the following example:

x = [0:10];
y = [0:10];
z = [0:10];
graph = plot(x,y,z, {marker=1, x_lab="X", y_lab="Y", Z-lab="Z"})

The default plot appears in Figure 4-22; this 3D vector is projected in such a way 
that it isn’t particularly useful.

NOTE:  You cannot resize or reshape the polygons you create because these are 
primitive tools.
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Using the rotation toolbar buttons, you can rotate this plot in almost an infinite 
number of ways. Figure 4-23 shows one rotated view, which gives more 
information that the default plot.

Figure 4-22 Default View of 3D Vector
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4.4.3  Menus

This section discusses the menus that are available in the Xmath Graphics window.

File

Bind to Variable — Saves the current Xmath Graphics window image as a variable 
that you specify. You can redisplay the plot at a later time by typing the 
variable name, or you can reuse the graph in another plot by using the keep 
keyword.

Figure 4-23 Rotated View of 3D Vector
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Print — Raises the Print dialog (UNIX version shown below), which allows you to 
send the image in the current Xmath Graphics window to a printer. The UNIX 
Print dialog allows you to save a graphics file in PS (PostScript), EPS, HPGL, 
PICT, CGM-ANS, CGM-CAL, or CGM-TXT format.

For UNIX, the default printer shown in the Print Command field is set at the 
operating system level. The default line printer for your system is assumed. 
The system’s default print command is set using the environment variables 
XMATH_PRINT and PRINTER. XMATH_PRINT defines the default print 
utility, while PRINTER defines the default printer.

On Windows operating systems, this command raises the standard Windows 
Print dialog from which you can also print to a file.
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For all systems, you can print from the Xmath command area using the 
HARDCOPY command (see the MATRIXX online Help HARDCOPY topic for 
details).

Iconify Window — Lower the Xmath Graphics window.

Close Window — Kill the Xmath Graphics window.

Edit

Cut — Delete the selected object.

Move Up, Down, Left, Right — Move the selected object. Distance will be 1-2 pixels, 
depending on the size of the window.

Bring to Front — Bring the selected object to the front.

View

Reset — Reset to the original graph.

Projection — Change the projection for the current graph. In stretched projection 
(the default for 2D plots), the plot is scaled to occupy the maximum amount 
of available space. For orthographic projection (the default for 3D plots), all 
axes are coscaled to have the same unit length (a circle will look round and a 
cube will look like a cube, not a shoe box). 

Lights — Toggle lights on/off.

Options

Timestamp — Add the timestamp to the graph. The timestamp appears in 
hour:minutes:second format and is positioned by default in the upper left corner 
of the graph. You can select it and then change the text attributes or move it. 
To remove the timestamp, select it then use Ctrl-x.

NOTE:  These commands work only for objects that you place on the graphic 
interactively or with keywords such as legend, date, time, and so forth. 
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Datestamp — Adds the datestamp to the graph. The date stamp appears in the 
day:month:date:year format and is positioned by default in the upper left corner 
of the graph. You can select it and then change the text attributes or move it. 
To remove the datestamp, select it, and then use Ctrl-x.

Legend — Toggle the legend on/off.

Icon Bar — Toggle the toolbar on/off (UNIX only).

Font (UNIX Only)

This menu is only available if text is selected in the Xmath Graphics window. 
PostScript fonts available are Times, Helvetica, and Courier. Stroke fonts available 
are Simplex, Duplex, Triplex, Complex, Script, and Greek. 

Point (UNIX Only) 

This menu is only available if text is selected in the Xmath Graphics window. Point 
sizes are 6, 9, 10, 12, 14, 18, 24, 36, and 48. You can also choose the font style: plain, 
bold, italic, or bold italic.

Tools (Windows Only)

You can use this menu to duplicate all the functions on the toolbar. Select the 
menu item rather than the toolbar button to perform the same function (see 
4.4.2 Toolbar, p.175).

NOTE:  Your machine might not be able to display all fonts in all sizes listed in the 
Point menu; the same is true for printer output. In either case, the device produces 
the font it can manage.

NOTE:  Your machine might not be able to display all fonts in all sizes; the same is 
true for printer output. In either case, the device produces the font in the closest 
size it can manage.
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Windows

This menu allows you to bring other Xmath windows to the front quickly. Of 
special note is the Palette, which is used to make interactive changes to graphic 
objects.

4.4.4  Xmath Palette

Xmath provides another window from which you can work interactively. 

To bring up the Xmath Palette:

Click Windows→Palette in the Xmath Graphics window.

The Xmath Palette comes on view. The UNIX version looks a little different 
from the Windows version, but the functions are essentially the same. The 
default UNIX version appears in Figure 4-19, p.173. You can also select colors 
via a color wheel on the UNIX version; this view of the Xmath Palette appears 
in Figure 4-24, as well as the Windows version of the window.
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To use the Xmath Palette:

1. Select an object in the Xmath Graphics window.

The object type appears at the top of the Xmath Palette in the title bar.

The radio button for the active option—Lines, Markers, Fills, or Text—is pushed. 
All items that are available for the selected item are active, whereas others are 
inactive in the window. 

Figure 4-24 Xmath Palette: UNIX and Windows Versions
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2. Click the radio button for the option that you wish to change: Lines, Markers, 
Fills, or Text.

3. Make the desired changes for this option.

You can control the color of all attributes. You can turn lines, markers, and fills 
off or choose the type of each. For lines and markers, you can also choose the 
width. For text you have a choice of fonts, sizes, plain, bold, italic, or bold 
italic style. The text choices mimic the options available through the Font and 
Point menus in the Xmath Graphics window in UNIX.

4. Modify as many attributes for as many objects as you want, and the click 
Close to close the window.
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Data Objects and Operators
This chapter provides a conceptual overview and detailed descriptions of Xmath 
data objects and operators.

5.1  Data Hierarchy

Xmath data hierarchy, as shown in Figure 5-1, is divided into numeric and 
nonnumeric branches.

The matrix, for example, is general. It consists of matrices of various shapes. The 
square matrix is a specific kind of matrix that requires an equal number of rows 
and columns, but otherwise inherits the characteristics of the matrix. A scalar is a 
special kind of square matrix with dimensions of 1 × 1. A scalar is also defined as 
a special kind of vector, because it is a vector with a length of 1.
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Xmath’s object-based structure provides three significant benefits:

simplified data management — As variables in Xmath can represent complex 
groupings of data, you don’t have to track numerous variables. For example, 
with a state-space system using system(A,B,C,D), all the data (including input 
names, output names, etc.) is stored in a single variable. The matrices can be 
deleted.

optimized performance — Many Xmath data objects were designed to take 
advantage of optimized algorithms. This is especially true of the specialized 
matrices. The eigenvalues of a symmetric matrix, for example, can be found 

Figure 5-1 Object Relationships
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more quickly with a symmetric eigensolver rather than a general eigensolver. 
Xmath recognizes the special properties of a matrix and uses the appropriate, 
optimized algorithm.

natural syntax — Because Xmath recognizes the special properties of each type of 
data object, operations are intuitive. For example, it is more natural to 
multiply two polynomials by typing p1*p2 than it is to call convolve(p1,p2).

5.1.1  Data Object Descriptions

This chapter describes Xmath data objects in the following order:

■ Matrix

■ Polynomial

■ Parameter-dependent matrix (PDM)

■ Dynamic system

■ String

■ List

Some of the categories are subdivided. For example, dynamic systems include 
state-space systems and transfer functions, and matrices include the following:

■ Vector

● Regular vector

● Logspaced vector

■ Square

● Symmetric, Diagonal, Identity, Toeplitz

● Hessenberg, Triangular

● Scalar

■ Indexlist

NOTE:  To reproduce the examples, cut and paste the bold courier text. 
189



MATRIXX 7.0
Xmath User’s Guide
5.2  Matrix

A matrix is an object organizing m rows and n columns (m × n) of real or complex 
numbers (elements). A complex number contains both a real and an imaginary 
term. A matrix is complex if at least one element is complex; to qualify as a real 
matrix, all elements must be real. 

Matrices are specified with the following syntax elements:

■ A matrix specification is enclosed in square brackets. 

■ Matrix column elements must be separated by commas. 

■ A semicolon separates rows.

For example, x=[jay, 4; 3,–1]. In a formatted matrix, a line feed replaces the 
semicolon:

x=[jay, 4 # Line Feed
3, –1] # Return

(If your machine does not have a Line Feed key, see Table 1-7, p.20.) The matrix 
specification ends with a right bracket.

Specific types of matrices are also created with functions such as zeros( ), 
random( ), diagonal( ), etc. These functions require row and column dimensions as 
inputs:

set seed = 0
x=random(3,4)

x (a rectangular matrix) =

  0.211325    0.756044    0.000221135    0.330327
  0.665381    0.628392    0.849745       0.685731
  0.878216    0.068374    0.560849       0.662357

The functions check( ) and is( ) can be used to determine if a variable is a matrix. 
For brief explanations of check( ) and is( ), see 6.3.2 Object Query Functions, p.238. 
Sample syntaxes are: check(x,{matrix}) or is(x,{matrix}).

Use size to find the row and column dimensions of a matrix:

size(x)

ans (a row vector) =   3    4

To find the total number of elements, use length( ):

length(x)
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ans (a scalar) =   12

Many classes stem from the matrix class, and it is the primary component of 
several more specialized objects. 

5.2.1  Matrix Concatenation

Concatenation (combining several matrices into a new matrix) is performed using 
square bracket operators []. Right concatenation is indicated with commas [,]; 
bottom concatenation is indicated by semicolons [;].

For example,

■ [A,B] concatenates B to the right of A (where B must have the same number of 
rows as A).

■ [A;B] concatenates B to the bottom of A (where B must have the same number 
of columns as A). 

x=random(3,2)*12

x (a rectangular matrix) =

  8.71621    2.38217
  6.53109    2.7849 
  2.77468    2.59756

x=[x,ones(3,4);ones(2,2),zeros(2,4)]

x (a rectangular matrix) =

  8.71621    2.38217    1    1    1    1
  6.53109    2.7849     1    1    1    1
  2.77468    2.59756    1    1    1    1
  1          1          0    0    0    0
  1          1          0    0    0    0

5.2.2  Matrix Operators

The operators in Table 5-1 have special meanings for matrices:

scalar operator matrix 

usually means applying the operator elementwise.

mat1=[1,1,1,1; 2,2,2,2; 3,3,3,3];
mat2=mat1 * mat1'
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mat2 (a square matrix) =
4     8    12

   8    16    24
  12    24    36

3 * mat1

ans (a rectangular matrix) =

  3    3    3    3
  6    6    6    6
  9    9    9    9 

Table 5-1 Matrix Operations 

Operator Effect

+ Addition (or unary plus). Matrices must have the same dimensions.

– Subtraction (or unary minus). Matrices must have the same dimensions.

* Matrix multiplication. The number of columns in the first matrix must 
equal the number of rows in the second matrix.

/ Matrix right division. A/B solves the equation X ¥ B=A. The number of 
columns in A must equal the number of rows in B.

\ Matrix left division. B\A solves the equation B ¥ X=A. The number of 
columns in B must equal the number of rows in A.

' Transpose (unary suffix). 

*' Complex conjugate transpose (unary suffix). 

.* Elementwise matrix multiplication. Matrices must have the same 
dimensions.

./ Elementwise division (left divided by right). Matrices must have the 
same dimensions. 

.\ Elementwise division (right divided by left). Matrices must have the 
same dimensions. 

^ or ** Raise a square matrix to a scalar power. 

.^ or .** Raise elements to a power. Another matrix of the same size can contain 
the powers.

.*. Kronecker product. 

./. Kronecker right division. 
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5.2.3  Matrix Indexing

Indexing (extracting a specific subset of matrix elements) is performed using the 
parentheses operators ( ). Indices can consist of any one of the following: 

■ Two integers specifying the desired row and column. 

A(i,j) extracts from A the element located in row i, at column j. This can be 
demonstrated using the matrix mat2 created earlier.

mat2

mat2 (a square matrix) =

   4     8    12
   8    16    24
  12    24    36

mat2(2,3)

ans (a scalar) =   24

.\. Kronecker left division. 

& Elementwise logical and.

| Elementwise logical or.

! Elementwise logical not. 

< Elementwise less than. 

> Elementwise greater than. 

<= Elementwise less than or equal.

>= Elementwise greater than or equal. 

== Elementwise equal.

<> Elementwise not equal. 

= Assignment.

Table 5-1 Matrix Operations  (Continued)

Operator Effect
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■ Two vectors of integers specifying a range of rows and columns. 
A(vector1,vector2) extracts a portion of A with rows corresponding to vector 1 
and columns corresponding to vector 2.

mat2(1:2,2:3)

ans (a square matrix) =

   8    12
  16    24

■ An index list that specifies all desired element locations in terms of row and 
column indices. An index list can be created with the find( ) or indexlist( ) 
functions. For more on the index list object, see 5.8 Index Lists, p.239.

ijList=find(mat2>15)

ijList (an index list) =

  2    2
  2    3
  3    2
  3    3

■ Note that find( ) returns the row and column coordinates for elements in mat2 
that are greater than 15: (2,2), (2,3), (3,2), and (3,3). You can use indexing to 
display the values in these index list locations:

mat2(ijList)

ans (a column vector) =

  16
  24
  24
  36

Indexing with the Colon Operator (:)

The colon operator (:) is a wildcard for all elements, thus A(i,:) is the ith row of A 
and A(:,j) is the jth column of A.

You can use a wildcard and a decreasing vector to reverse the columns of a 
matrix.

mat2(:,[3:-1:1])

ans (a square matrix) =
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  12     8     4
  24    16     8
  36    24    12

Here wildcards are used to extract rows, which are reassembled into a new 
matrix:

mat3=[mat2(1,:);sqrt(mat2(2,:));mat2(3,:)^2]

mat3 (a square matrix) =

    4            8      12      
    2.82843      4       4.89898
  144          576    1296 

5.2.4  Vector

The vector class is a subclass (or specialization) of the matrix class. A vector object 
is a matrix that has a row or column dimension equal to 1. Vectors can be oriented 
as either rows or columns. 

Many of the functions defined for matrices apply to vectors as well. Vectors also 
have many special behaviors. The most important of these are listed below:

■ Use ^ to raise elements to a power (for matrices, use .^).

[1:4]^[1:4]

ans (a row vector) =   1    4    27    256

■ Vectors can be indexed with a single index variable. Thus v(i) is the ith 

element of the vector v. A single vector of integers can also be used as an 
index.

a=[2,4,6,8,10]

a (a row vector) =   2    4    6    8    10

a([1,3,5])

ans (a row vector) =   2    6    10

■ The colon (:) wildcard expands vectors in column form. aVector(:) is 
always defined as a column, regardless of whether the vector is a row or 
column.

■ The length( ) function is the most natural method of determining the length of 
vector. length(aVector) is defined as max(size(aVector)).
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■ To see if a variable is a vector, invoke is(var,{vector}) or 
check(var,{vector}). 

To determine whether the vector is a row or column, use is(var,{row}) or 
is(var,{column}) (or use check). The {row} and {column} keywords imply 
{vector}. For brief explanations of check and is, see 6.3.2 Object Query 
Functions, p.238.

Regular Vector

A regular vector is evenly spaced, with each element a fixed increment from the 
previous value. If a regular vector is created with the colon operator, Xmath stores 
it as just three values (start:increment:stop). You can treat it as a vector, but it is 
displayed in a special manner. 

■ A regular vector can only be a row vector. Transposing it expands it to full 
size (turns it into a simple vector).

x=0:0.33:1

x (a regularly spaced vector) =   0 : 0.33 : 1

x'

ans (a column vector) =

  0   
  0.33
  0.66
  0.99

■ Putting a regular vector between square braces [] will expand it.

[x]

ans (a row vector) =   0    0.33    0.66    0.99

A regular vector is internally expanded for most operations, except indexing.

Although a regular vector is stored in compact form (as start, stop, and 
increment values), it has the same dimensions as if it were created in 
expanded form. You can view the sizes of all the variables in your current 
partition with the who command. Use the size function to view the size of a 
single variable:

size(x)

ans (a row vector) =   1    4
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Logspaced Vector

A logspaced vector is just like a regular vector except that its points are evenly 
spaced on a log scale. It can only be created with the logspace( ) function. 
logspace( ) inputs are the initial value, the final value, and the number of points 
desired in the vector. All the display considerations for a regular vector apply to 
logspaced vectors.

x1=logspace(0.1,10,4)

x1 (a log–spaced vector) =   0.1 : 10 (4 points)

[x1]

ans (a row vector) =   0.1   0.464159   2.15443   10

5.2.5  Square Matrix

The square matrix class is a subclass of the matrix class. A square matrix object 
has equal row and column dimensions.

All of the functions that are defined for matrices are also defined for square 
matrices. However, there are several square matrix functions that are not valid for 
rectangular matrices. The most important of these are shown in Table 5-2.

Table 5-2 Functions That Are Only Valid for Square Matrices 

Function Result

^ or ** raise matrix to a power (A^3=A × A × A)

.^ or .** raise each element to a power

cholesky( ) Cholesky decomposition 

cosm( ) matrix cosine (use cos elementwise) 

det( ) determinant 

eig( ) eigenvalues 

expm( ) matrix exponential (use exp elementwise) 

hessenberg( ) Hessenberg decomposition 

inv( ) inverse 

logm( ) matrix logarithm (use log elementwise) 
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Symmetric

The symmetric matrix class is a subclass of the square matrix class. A symmetric 
matrix object is equal to its transpose.

For most applications, symmetric matrices act just like square matrices. Certain 
algorithms take advantage of their special structure to achieve improved results. 
For example, the eigenvalues of a symmetric matrix can be found more quickly 
than the eigenvalues of a general matrix; also, the answers are constrained to be 
purely real.

a=[1:4];b=[a;a;a;a]

b (a square matrix) =

  1    2    3    4
  1    2    3    4
  1    2    3    4
  1    2    3    4

is(b,{symmetric})

ans (a scalar) =   0

c=tril(b,1) + tril(b,1)'

lu( ) L-U decomposition 

orth( ) orthogonal decomposition 

polynomial( ) characteristic polynomial 

polyvalm( ) evaluates polynomial function of a matrix

qz( ) generalized eigenvalues 

rref( ) reduced–row echelon form 

schur( ) Schur form 

sinm( ) square matrix sine (use sin elementwise) 

sqrtm( ) matrix square root (use sqrt elementwise) 

trace( ) find the sum of the diagonal elements of a matrix

Table 5-2 Functions That Are Only Valid for Square Matrices  (Continued)

Function Result
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c (a square matrix) =

  2    3    1    1
  3    4    5    2
  1    5    6    7
  1    2    7    8

is(c,{symmetric})

ans (a scalar) =   1

Diagonal( )

The diagonal matrix class is a subclass of the symmetric matrix class and the 
triangular matrix class (see p.201). A diagonal matrix object has zero in all 
positions except along the main diagonal. 

The diagonal( ) function can be used to extract a diagonal from a matrix. Extract 
the diagonal from the matrix c defined above:

d=diagonal(c)

d (a column vector) =

  2
  4
  6
  8

If a vector is used as an input, a matrix is created that has the vector on the main 
diagonal.

e=diagonal(d) # use the vector d as the 
# diagonal of a new matrix

e (a square matrix) =

  2    0    0    0
  0    4    0    0
  0    0    6    0
  0    0    0    8

Identity 

The identity matrix class is a subclass of the diagonal matrix class. An identity 
matrix object has ones on the main diagonal and zero for all other elements. The 
function eye( ) creates an identity matrix from row and column dimensions:
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eye(3,3)

ans (a square matrix) =

  1    0    0
  0    1    0
  0    0    1

For most applications, identity matrices act like square matrices. Certain 
algorithms (such as multiplication and inversion) take advantage of their special 
structure. 

Toeplitz

The Toeplitz matrix class is a specialization of the square matrix class with 
constant entries along the diagonals. A Toeplitz matrix can be described by its 
first row and first column (if it is symmetric, it can be described by a single 
vector). The matrix left and right division operations have been overloaded for 
solving matrix equations of the form  and  (where T is a 
Toeplitz matrix):

t=toeplitz([3,2,1],[1,2,3])

t (a toeplitz matrix) = 

  3    2    1
  2    3    2
  3    2    3

Hessenberg( )

The Hessenberg matrix class is a subclass of the square matrix class. A 
Hessenberg matrix has zeros in all elements below the first subdiagonal or above 
the first superdiagonal. The hessenberg( ) function puts a matrix A in Hessenberg 
form H, defined such that ∗ ' where T is a unitary 
transformation matrix of the same size and type as A.

hessenberg([1,2,3;1,2,3;1,2,3])

ans (a square matrix) =

   1          -3.53553         0.707107   
  -1.41421     5              -1          
   0          -3.14018e-16     3.14018e-16

T X A=× X T A=×

A T H× T×=
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Triangular

The triangular matrix class is a specialization of the Hessenberg matrix class. A 
triangular matrix object has zeros in all elements above the main diagonal (upper 
triangular) or below the main diagonal (lower triangular). 

set seed 0
a=round(rand(4,4)*4)

a (a square matrix) =

  1    3    0    1
  3    3    3    3
  4    0    2    3
  3    1    2    1

12345678 112345678 212345678

aTriu=triu(a) # an upper triangular

aTriu (a square matrix) =

  1    3    0    1
  0    3    3    3
  0    0    2    3
  0    0    0    1

aTril=tril(a) # a lower triangular

aTril (a square matrix) =

  1    0    0    0
  3    3    0    0
  4    0    2    0
  3    1    2    1

Scalar

The scalar class is a subclass of the square matrix class. A scalar object is a matrix 
with a single row and a single column.

Any function or operator defined for a matrix is also defined for a scalar. 
However, scalars have many special properties when used in combination with 
other classes of objects, as shown in the samples that follow.

scalar x matrix — Each element of the matrix is multiplied by the scalar. The same 
holds true for vectors and PDMs. Division works the same way.

5∗ [1:5]
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ans (a row vector) =   5    10    15    20    25

ans/5

ans (a row vector) =   1    2    3    4    5

scalar x polynomial — If the polynomial is in factored form, the gain of the 
polynomial is multiplied by the scalar. (Polynomials are discussed in detail 
starting on p.205.) If the polynomial is in coefficient form, each coefficient is 
multiplied by the scalar. Division works the same way. 

Using a scalar with a polynomial in roots form:

4*polynomial(1:4)

ans (a polynomial) =
                               
  4(x - 1)(x - 2)(x - 3)(x - 4)

Using a scalar with a polynomial in coefficients form:

makepoly(1:4)

ans (a polynomial) =

    3    2        
   x + 2x + 3x + 4

ans/0.5

ans (a polynomial) =

    3    2        
  2x + 4x + 6x + 8

scalar x system — Multiplies the gain of the system by the scalar. (Dynamic-system 
objects are discussed in detail starting on p.227.) For transfer functions, the 
numerator polynomial is multiplied by the scalar. For state-space systems, the 
C and D matrices are multiplied by the scalar. Division works the same way.

system([2,2;2,2],[3;3],[4,4],1);

2*ans

ans (a state space system) =

  A
  2    2
  2    2

  B
  3
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  3

  C
  
  8    8

  D
  2

  X0
  0
  0

  System is continuous

system(makepoly(2:5),makepoly(0:3))

ans (a transfer function) =

    3    2        
  2x + 3x + 4x + 5
  ----------------
      2        
     x + 2x + 3

  initial integrator outputs
  0
  0
  0
  Input Names
  -----------
  Input 1

  Output Names
  ------------
  Output 1

  System is continuous

ans/2

ans (a transfer function) =

   3      2          
  x + 1.5x + 2x + 2.5
  -------------------
       2        
      x + 2x + 3

  initial integrator outputs
  0
  0
  0
  Input Names
  -----------
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  Input 1

  Output Names
  ------------
  Output 1

System is continuous

matrix+scalar — The scalar is added to each element of the matrix. This operation is 
commutative. The same holds true for vectors and PDMs. Subtraction works 
the same way.

-2+(3+(ones(3,3)))

ans (a square matrix) =

  2    2    2
  2    2    2
  2    2    2

polynomial+scalar — Converts the polynomial to coefficient form and adds the 
scalar to the scalar (order 0) term of the polynomial. This operation is 
commutative. Subtraction works the same way.

p=polynomial(3:5)

p (a polynomial) =
                       
  (x - 3)(x - 4)(x - 5)

2+p

ans (a polynomial) =

    3     2          
   x - 12x + 47x - 58

matrix(vector,vector)=scalar — Copies the scalar to each element of the specified 
partition of the matrix. The same holds true for vectors and PDMs.

o=ones(4,5);
o([2:3],[2:4])=32

o (a rectangular matrix) =

  1     1     1     1    1
  1    32    32    32    1
  1    32    32    32    1
  1     1     1     1    1
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5.3  Polynomial( )

Polynomials take the form  or . The first 
notation is in coefficients form; its coefficients (1, 9, -4 and 7) are plainly shown. 
The second polynomial is in roots form (its roots being 0, 2, and -6). Polynomial 
objects consist of a vector of coefficients or roots and a single independent 
variable (a text string, usually a single character). 

Polynomials can be defined in terms of their roots or coefficients. The 
polynomial( ) function creates a polynomial object where roots are the elements of 
a vector or eigenvalues of a square matrix you supply. You can specify a text 
string for the polynomial variable. makepoly( ) converts a simple vector into a 
polynomial. 

Create a polynomial from its roots with polynomial( ). The polynomial is 
displayed in roots form:

p1=polynomial([1*jay, -1*jay, 1,
               2*jay, -2*jay, 2,
               3*jay, -3*jay, 3], "j")

p1 (a polynomial) =
 2 2 2 
(j - 1)(j - 2)(j - 3)(j + 1)(j + 4)(j + 9)

p2=polynomial([9,8,7])

p2 (a polynomial) =
 
(x - 7)(x - 8)(x - 9)

Create a polynomial from a vector with makepoly( ); the polynomial will be 
displayed in coefficients form:

p3=makepoly(logspace(1,3,5),"L")

p3 (a polynomial) =

   4 3 2
   L + 1.31607L + 1.73205L + 2.27951L + 3

p4=makepoly(1:.5:3)

p4 (a polynomial) =

 4 3 2 
x + 1.5x + 2x + 2.5x + 3

x
3

9 x
2

4x 7+–+ x x 2–( ) x 6+( )
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5.3.1  Polynomial Operators

The following operators are valid for polynomials:

Operations can only be performed between polynomials that have the same 
independent variable or between polynomials and scalars.

p5=p2+p4

p5 (a polynomial) =

   4      3     2              
  x + 2.5x - 22x + 193.5x - 501

p6=p2*p2

p6 (a polynomial) =

         2       2       2
  (x - 7) (x - 8) (x - 9) 

sysp=3/p6

sysp (a transfer function) =

             3
  ------------------------
         2       2       2
  (x - 7) (x - 8) (x - 9) 

initial integrator outputs
  0
  0
  0
  0
  0
  0
  Input Names
  -----------
  Input 1    

  Output Names
  ------------
  Output 1    

+ polynomial addition 

– polynomial subtraction 

* polynomial multiplication 

/ creates a transfer function 
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  System is continuous

The functions in Table 5-3 can handle parts of polynomials; for more information 
on inputs and outputs, see the MATRIXX online Help.

5.4  Parameter-Dependent Matrix (PDM)

A parameter-dependent matrix (PDM) is a flexible extension of the matrix data 
type. It consists of a vector of same-size matrices with a vector attached to it. The 
attached vector (or parameter) is referred to as the domain (Figure 5-2). A PDM 
also has optional string names for its rows and columns (see Figure 5-3).

Table 5-3 Polynomial Handling Functions 

roots( ) extracts the roots of a polynomial

makematrix( ) extracts the coefficients of a polynomial

domain( ) extracts the independent variable from a polynomial or PDM

polyval( ) evaluates a polynomial at each element of a given matrix

polyvalm( ) evaluates a polynomial over an entire square matrix
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PDM data is stored as a series of matrices indexed by a single domain vector. 
Computations involving the PDM are performed on each matrix separately. Data 
can also be handled as a series of vectors, called channels, having a common 
domain vector (time or frequency, for example). In this format, the computations 
are performed on each vector of the data separately.

Used either way, PDMs provide a convenient method for storing data as a 
function of a parameter and are particularly useful in the analysis of multiple 
input and/or output dynamic systems, where they can be used to store time or 
frequency responses.

So, for example, when the frequency response of a system with n inputs and m 
outputs is calculated, a PDM is created. Each of the n columns represents an 
input, each of m rows represents an output, and the dependent matrix at element i 
of the domain corresponds to the frequency response from each output to each 
input. Plotting time and frequency responses stored as PDMs are particularly 
convenient when the {strip} keyword is used, in which case a matrix plot is 
produced where the rows and columns correspond with inputs and outputs, 
respectively (for information on strip plots, see 4.3.15 Strip Plots, p.145). For an 
explanation of time response, see 5.5.5 Time Response, p.234.

Figure 5-2 Structure of a PDM

Domain

vectors is called a channel
One vector in a matrix of 

m rows

n columns

i

208



5

5
Data Objects and Operators
5.4.1  PDM Organization

Consider the object radar as an example of PDM organization (Figure 5-3). Exactly 
how radar is created is outlined in 5.4.2 Creating PDMs, p.210.

Every PDM consists of five main parts:

Dependent Data Matrix — Every PDM contains one or more matrices; radar has five 2 
× 2 matrices in the dependent data area. The matrices must be the same size. 
There is no limit to the size or number of matrices in this area.

Domain Vector —  The PDM allows you to group an independent vector of 
parameter values and a stack of associated matrices. The vector of 
independent parameter values is called the domain of the PDM. The domain 
usually represents a physical parameter, for example, time, frequency, 
temperature, pressure, or altitude. If no domain vector is specified, the PDM 
domain defaults to increasing positive integers starting from one.

Domain Name — A label for the domain vector. In radar, the domain string is "RCS". 
If no name is specified, the default string is "domain".

Row Names — Each dependent matrix row may have an optional string name. In 
radar, the names are "Radar 1" and "Radar 2". Each matrix has the same row 

Figure 5-3 Parts of the PDM radar

Domain

Domain

Dependent Data Matrices

Vector

Name

Row Names Column Names

RCS | Range % Error
---------+----------------------------

0.01 | Radar 1 5.311 0.01 
| Radar 2 6.316 0.07 

---------+----------------------------
0.02 | Radar 1 16.79 0.0  

| Radar 2 19.97 0.07 
---------+----------------------------

1 | Radar 1 26.28 0.08 
| Radar 2 29.86 0.04 

---------+----------------------------
2 | Radar 1 35.51 0.04 

| Radar 2 42.23 0.09 
---------+----------------------------

6 | Radar 1 53.11 0.01 
| Radar 2 63.16 0.02 

---------+----------------------------
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names associated with it. If no names are specified, the row names are labeled 
"Row 1", "Row 2", ..."Row N".

Column Names — Each dependent matrix column may have an optional string 
name. In radar, the names are "Range" and "% Error". If no column names are 
specified, the columns are labeled "Col 1", "Col 2", ..."Col N".

5.4.2  Creating PDMs

PDMs are created from a single matrix object using the function pdm( ). 
Additional optional arguments to pdm( ) specify the domain, domain label, and 
row and column labels to be associated with the matrices in the final PDM.

For the PDM radar, the dependent data is formed from a columnwise 
concatenation of the vectors maxrange and perr:

maxrange=[ 5.311, 6.313, 16.79, 19.97, 26.28, 29.86, 35.51, 42.23,
53.11, 63.16]';

perr = [0.01, 0.07, 0.0, 0.07, 0.08, 0.04, 0.04, 0.09, 0.01, 0.02]';

The final dependent data matrix [maxrange,perr] used as an argument to pdm( ) 
has 2 columns and 10 rows. 

The domain vector used in radar, rcs, has 5 elements.

rcs = [0.01,0.02,1,2,6];

Use the pdm( ) function to construct the PDM radar from the matrix 
[maxrange,perr] and the domain vector RCS:

radar = pdm([maxrange,perr],rcs,{domainName="RCS",
rowNames = ["Radar 1","Radar 2"],
columnNames = ["Range","% Error"]})

radar (a pdm) = 

 RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1   5.311  0.01   
     | Radar 2   6.313  0.07   
-----+-------------------------
0.02 | Radar 1  16.79   0      
     | Radar 2  19.97   0.07   
-----+-------------------------
1    | Radar 1  26.28   0.08   
     | Radar 2  29.86   0.04   
-----+-------------------------
2    | Radar 1  35.51   0.04   
     | Radar 2  42.23   0.09   
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-----+-------------------------
6    | Radar 1  53.11   0.01   
     | Radar 2  63.16   0.02   
-----+------------------------- 

You have just recreated the PDM shown on page 209.

The dependent matrix is the only required argument to a PDM. Any additional 
arguments can modify the structure of the PDM. For example, using pdm( ) with 
no optional arguments results in a PDM with each dependent matrix having one 
row. 

5.4.3  Default PDM Behavior

If you do not use the rows or columns keywords and do not specify a domain 
vector, each row of the input matrix becomes one of the output dependent data 
matrices. For example:

r43=rand(4,3)

r43 (a rectangular matrix) =

0.849745    0.685731    0.878216
0.068374    0.560849    0.662357
0.726351    0.198514    0.544257
0.232075    0.231224    0.216463

pdm(r43)

ans (a pdm) =

domain |   Col 1     Col 2     Col 3   
-------+-------------------------------
     1 |   0.849745  0.685731  0.878216
     2 |   0.068374  0.560849  0.662357
     3 |   0.726351  0.198514  0.544257
     4 |   0.232075  0.231224  0.216463

This default behavior also applies if any or all of the rows or columns keywords, 
or domain vector, are specified in a way that matches the default case. For 
example, Xmath generates the same PDM output (the rows and columns 
keywords are ignored in this case):

pdm(r43,{rows=1,columns=3})

ans (a pdm) =

domain |   Col 1     Col 2     Col 3   
-------+-------------------------------

1 |   0.849745  0.685731  0.878216
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2 |   0.068374  0.560849  0.662357
3 |   0.726351  0.198514  0.544257
4 |   0.232075  0.231224  0.216463

pdm(r43,1:4)

ans (a pdm) =

domain |   Col 1     Col 2     Col 3   
-------+-------------------------------

1 |   0.849745  0.685731  0.878216
2 |   0.068374  0.560849  0.662357
3 |   0.726351  0.198514  0.544257
4 |   0.232075  0.231224  0.216463

If you specify arguments that deviate from the default, other PDMs are obtained:

pdm(r43,1:3)

ans (a pdm) =

domain |                
-------+----------------

1 | Row 1  0.849745
 | Row 2  0.068374
 | Row 3  0.726351
 | Row 4  0.232075

-------+----------------
 2 | Row 1  0.685731
 | Row 2  0.560849
 | Row 3  0.198514
 | Row 4  0.231224

-------+----------------
 3 | Row 1  0.878216
 | Row 2  0.662357
 | Row 3  0.544257
 | Row 4  0.216463

-------+----------------

In the above example, the number of rows of the input matrix (4) is not a multiple 
of the length of the domain vector (3). However, the number of columns of the 
input matrix (3) is a multiple. In this case, each column (instead of each row) of 
the input matrix becomes one of the output Dependent Data Matrices.

When no domain vector is specified, the default vector is [1:1:#rows].

pdm([maxrange,perr])

ans (a pdm) =

domain |   Col 1   Col 2
-------+----------------
     1 |    5.311  0.01 
     2 |    6.313  0.07 
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     3 |   16.79   0    
     4 |   19.97   0.07 
     5 |   26.28   0.08 
     6 |   29.86   0.04 
     7 |   35.51   0.04 
     8 |   42.23   0.09 
     9 |   53.11   0.01 
    10 |   63.16   0.02

To change the dimensions of the dependent matrices, use the rows and columns 
keywords. For example:

pdm([maxrange,perr], {rows = 2, columns = 2})

ans (a pdm) =

domain |        Col 1   Col 2
-------+---------------------
     1 | Row 1   5.311  0.01 
       | Row 2   6.313  0.07 
-------+---------------------
     2 | Row 1  16.79   0    
       | Row 2  19.97   0.07 
-------+---------------------
     3 | Row 1  26.28   0.08 
       | Row 2  29.86   0.04 
-------+---------------------
     4 | Row 1  35.51   0.04 
       | Row 2  42.23   0.09 
-------+---------------------
     5 | Row 1  53.11   0.01 
       | Row 2  63.16   0.02 
-------+---------------------

Alternatively, the row and column size is implied in the number of strings entered 
in keywords columnnames and rownames:

pdm([maxrange,perr],{rowNames = ["Radar 1","Radar 2"], 
columnNames = ["Range","% Error"]})

ans (a pdm) =

domain |          Range   % Error
-------+-------------------------
     1 | Radar 1   5.311  0.01   
       | Radar 2   6.313  0.07   
-------+-------------------------
     2 | Radar 1  16.79   0      
       | Radar 2  19.97   0.07   
-------+-------------------------
     3 | Radar 1  26.28   0.08   
       | Radar 2  29.86   0.04   
-------+-------------------------
     4 | Radar 1  35.51   0.04   
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       | Radar 2  42.23   0.09   
-------+-------------------------
     5 | Radar 1  53.11   0.01   
       | Radar 2  63.16   0.02   
-------+-------------------------

The dependent matrix size can also be influenced by the domain vector. In the 
following example, the columns of the PDM matrices are the same as the input 
matrix. The number of rows of each PDM matrix is equal to the total number of 
rows in the input matrix divided by the number of elements in the domain vector. 
The domain rcs has 5 elements, and the input matrix has 10 rows. Therefore, each 
PDM matrix has 10/5 (=2) rows. 

pdm([maxrange,perr],rcs)

ans (a pdm) =

domain |        Col 1   Col 2
-------+---------------------
  0.01 | Row 1   5.311  0.01 
       | Row 2   6.313  0.07 
-------+---------------------
  0.02 | Row 1  16.79   0    
       | Row 2  19.97   0.07 
-------+---------------------
  1    | Row 1  26.28   0.08 
       | Row 2  29.86   0.04 
-------+---------------------
  2    | Row 1  35.51   0.04 
       | Row 2  42.23   0.09 
-------+---------------------
  6    | Row 1  53.11   0.01 
       | Row 2  63.16   0.02 
-------+---------------------

The PDM row and column dimensions specified by rows, rowNames, columns, 
and columnNames must agree with the PDM dimensions specified by the domain 
vector, or an error message is returned:

pdm(r43,{rows=1,columns=3})

Dimensions of PDM do not match specified rows and columns and length of domain 
vector

5.4.4  PDM Channels

In some circumstances, a PDM is a collection of vectors instead of a collection of 
matrices. For PDMs, these vectors are called channels of the PDM. A channel is a 
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vector consisting of the same element from each dependent matrix. For example, 
radar has four channels,

(1,1) :  5.311, 16.79, 26.28, 35.51, 53.11
(2,1) :  6.313, 19.97, 29.86, 42.23, 63.16
(1,2) :  0.01,      0,  0.08,  0.04, 0.01
(2,2) :  0.07,   0.07,  0.04,  0.09, 0.02

and all channels have the common independent variable defined by rcs. 
Figure 5-2 illustrates this idea.

Certain MathScript functions, such as fft( ), have the option of operating on the 
dependent matrices or the channels of a PDM. By default, all functions operate on 
the dependent matrices.

Y = fft(radar)

If the FFT of each channel is needed, the channels keyword must be included.

Y = fft(radar, {channels})

See 5.4.8 Using Functions with PDMs, p.225 for more details on using functions 
with PDMs.

5.4.5  Indexing to Extract Portions of a PDM 

PDM Dimensions

Use the size( ) function to see the dimensions of the new PDM:

size(radar)

ans (a row vector) = 2 2 5

The above result indicates that each dependent matrix has two rows and two 
columns, and that the length of the PDM (the length of the domain or the number 
of dependent matrices) is five.

Dependent Matrices

PDM indexing allows you to extract parts of a PDM. The output of any PDM 
indexing operation is always another PDM. If you want to index to extract a 
single piece of data (as opposed to a dependent matrix or a channel of a PDM) it 
may be simpler to use makematrix( ) before indexing (see p.222). 
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To extract a single dependent matrix, use a single index corresponding to the 
domain value of interest. For example, you might want to extract only the data 
pertaining to objects with RCS value of 1: 

radar(3)

ans (a pdm) =

RCS |          Range  % Error
----+------------------------
  1 | Radar 1  26.28  0.08   
    | Radar 2  29.86  0.04   
----+------------------------

To see the third through fifth elements of the PDM, you could index into radar 
using the standard colon notation (see p.194):

radar(3:5)

ans (a pdm) =

RCS |          Range  % Error
----+------------------------
  1 | Radar 1  26.28  0.08   
    | Radar 2  29.86  0.04   
----+------------------------
  2 | Radar 1  35.51  0.04   
    | Radar 2  42.23  0.09   
----+------------------------
  6 | Radar 1  53.11  0.01   
    | Radar 2  63.16  0.02   
----+------------------------

You can also examine one or more channels of the data in a PDM and see changes 
over the length of the PDM (as the RCS parameter changes). When indexing with 
both row and column specifications, you extract the (i,j) channel over the entire 
domain. The following example extracts the element that resides in the second 
row and first column of each dependent matrix.

radar(2,1)

ans (a pdm) =

 RCS |          Range 
-----+----------------
0.01 | Radar 2   6.313
0.02 | Radar 2  19.97 
1    | Radar 2  29.86 
2    | Radar 2  42.23 
6    | Radar 2  63.16

The standard colon notation can be used to access more than one channel:
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radar(1:2,1)

ans (a pdm) =

 RCS |          Range 
-----+----------------
0.01 | Radar 1   5.311
     | Radar 2   6.313
-----+----------------
0.02 | Radar 1  16.79 
     | Radar 2  19.97 
-----+----------------
1    | Radar 1  26.28 
     | Radar 2  29.86 
-----+----------------
2    | Radar 1  35.51 
     | Radar 2  42.23 
-----+----------------
6    | Radar 1  53.11 
     | Radar 2  63.16 
-----+----------------

To extract a single value in PDM form, you can use a temporary value:

temp=radar(5);
FinalPerr=temp(2,2)

FinalPerr (a pdm) =

RCS |          % Error
----+-----------------
  6 | Radar 2  0.02

Individual PDM elements can be extracted and modified using three scalar 
indices to specify the row, column, and domain positions, respectively. The 
returned object is always a scalar. Thus, for the radar example:

radar(1,1,1)

ans (a scalar) =   5.311

radar(2,2,5)

ans (a scalar) =   0.02

radar(2,1,3)=radar(1,1,5)

radar (a pdm) =
RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1   5.311  0.01 
     | Radar 2   6.313  0.07 
-----+-------------------------
0.02 | Radar 1  16.79   0 
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     | Radar 2  19.97   0.07 
-----+-------------------------
1    | Radar 1  26.28   0.08 
     | Radar 2  53.11   0.04 
-----+-------------------------
2    | Radar 1  35.51   0.04 
     | Radar 2  42.23   0.09 
-----+-------------------------
6    | Radar 1  53.11   0.01 
     | Radar 2  63.16   0.02 
-----+-------------------------

Domain and Name Information

The domain can be extracted using domain( ).

rsvector = domain(radar)

rsvector (a row vector) = 0.01 0.02 1 2 6

The PDM names can be extracted with the names( ) function. In order to get all 
three labels, specify three outputs:

[rowN,colN,domN]=names(radar)

rowN (a row vector of strings) =   Radar 1    Radar 2    

colN (a row vector of strings) =   Range    % Error    

domN (a string) =   RCS

Example 5-1 Indexing into a PDM 

This example illustrates PDM indexing by plotting a PDM and different 
combinations of data that can be extracted from it. Note that plot( ) will reuse the 
row and column labels from your PDM, if possible.

x=logspace(1,100,3);F=([1.02:.02:2.5]);
s1c=system(makep([sin(x)]),makep(-x*2));
s2c=system(makep([cos(x)]),makep(x*2));
s3c=system(makep([cot(x)]),makep(x));

s1d=discr(s1c,1);
s2d=discr(s2c,2);
s3d=discr(s3c,3);

f1c=freq(s1c,F);f1d=freq(s1d,F);
f2c=freq(s2c,F);f2d=freq(s2d,F);
f3c=freq(s3c,F);f3d=freq(s3d,F);

p=pdm([[f1c;f1d],[f2c;f2d],[f3c;f3d]],
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{columnnames=["sys","sys2","sys3"], rownames=["cont","disc"]});
plot(p,{strip})

If strip is specified alone, each submatrix is plotted in a separate subgraph, as 
shown in Figure 5-4. Try plotting portions of the PDM with the different strip 
settings shown below.

If the number of strips is specified, the inputs will be plotted accordingly.

plot(p,{strip=3})

Extract all discrete rows, then plot one plot per subgraph:

plot(p(2,:),{strip=1})

Plot all rows of the 2nd column with default strip settings.

plot(p(:,2),{strip})

Figure 5-4 PDM Plotted with strip
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5.4.6  Modifying PDMs

Substitution 

Using PDM indexing (outlined in 5.4.5 Indexing to Extract Portions of a PDM, 
p.215), assignments can be made to replace parts of a PDM. For example, to 
replace the third dependent matrix of radar with an identity matrix, type:

ind = eye(2,2); radar_copy = radar; radar_copy(3) = ind

To replace a channel of data, type:

ind = [10,20,30,40,50];
radar_copy(1,1) = ind

radar_copy (a pdm) =

 RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1   5.311  0.01   
     | Radar 2   6.313  0.07   
-----+-------------------------
0.02 | Radar 1  16.79   0      
     | Radar 2  19.97   0.07   
-----+-------------------------
1    | Radar 1   1      0      
     | Radar 2   0      1      
-----+-------------------------
2    | Radar 1  35.51   0.04   
     | Radar 2  42.23   0.09   
-----+-------------------------
6    | Radar 1  53.11   0.01   
     | Radar 2  63.16   0.02   
-----+-------------------------
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Concatenation 

Compatible PDMs can be concatenated in the same manner as matrices. A comma 
results in right concatenation, and a semicolon results in bottom concatenation.

new_radar =[radar,radar(1:2,1)^2]

new_radar (a pdm) =

 RCS |          Range   % Error  Range    
-----+------------------------------------
0.01 | Radar 1   5.311  0.01       28.2067
     | Radar 2   6.313  0.07       39.854 
-----+------------------------------------
0.02 | Radar 1  16.79   0         281.904 
     | Radar 2  19.97   0.07      398.801 
-----+------------------------------------
1    | Radar 1  26.28   0.08      690.638 
     | Radar 2  29.86   0.04      891.62  
-----+------------------------------------
2    | Radar 1  35.51   0.04     1260.96  
     | Radar 2  42.23   0.09     1783.37  
-----+------------------------------------
6    | Radar 1  53.11   0.01     2820.67  
     | Radar 2  63.16   0.02     3989.19  
-----+----------------------------------------

radar_copy (a pdm) =

 RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1  10      0.01   
     | Radar 2   6.313  0.07   
-----+-------------------------
0.02 | Radar 1  20      0      
     | Radar 2  19.97   0.07   
-----+-------------------------
1    | Radar 1  30      0      
     | Radar 2   0      1      
-----+-------------------------
2    | Radar 1  40      0.04 
     | Radar 2  42.23   0.09   
-----+-------------------------
6    | Radar 1  50      0.01   
     | Radar 2  63.16   0.02   
-----+----------------------------
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Converting PDMs to Matrices

The makeMatrix( ) function converts a PDM into a matrix by discarding the 
independent parameter (domain) and right concatenating the dependent matrices 
columnwise. If a PDM is an argument to makematrix( ), a matrix containing all 
dependent matrix data is returned:

radar_mx = makematrix(radar)

radar_mx (a rectangular matrix) =

5.311    0.01    16.79    0 26.28    0.08    35.51 0.04 ...
6.313 0.07 19.97 0.07 29.86 0.04 42.23 0.09 ...

All Radar 1 values are right-concatenated to form the first row, and all Radar 2 
values appear in the second row. 

To create a matrix formatted in the same manner as the dependent matrix 
elements in radar, transpose the PDM (this transposes each dependent matrix 
separately for each domain element), then transpose the result as shown below. 
Compare this result to radar and radar_mx.

radar_mxTrans = makematrix(radar')'

radar_mxTrans (a rectangular matrix) =

   5.311    0.01
   6.313    0.07
  16.79     0   
  19.97     0.07
  26.28     0.08
  29.86     0.04
  35.51     0.04
  42.23     0.09
  53.11     0.01
  63.16     0.02

When the channels keyword is used, rows of each dependent matrix are right-
concatenated to form rows in the resulting matrix:1

radar_mxChan = makematrix(radar,{channels})

radar_mxChan (a rectangular matrix) =

5.311  0.01  6.313  0.07
16.79  0 19.97  0.07
26.28  0.08 29.86  0.04

1. This feature can be used to convert time and frequency responses to a format similar to that 
used in MATRIXX.
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35.51  0.04 42.23  0.09
53.11  0.01 63.16  0.02

Sections of a PDM can also be used as an input to makematrix( ). This makes it 
easy to extract a desired value. For example, to see the range for Radar 2 at 0.01:

temp=makematrix(radar(1))

temp (a square matrix) =

5.311    0.01
6.313    0.07 

temp(2,1)

ans (a scalar) = 6.313

The SAVE command also has the ability to create matrices from PDMs. When 
SAVE is called with the matrixx keyword, all saved PDMs are stored as two 
matrices. The domain is given the name pdmName_t and the dependent matrix 
data is given the name pdmName_u, where pdmName is the name of the original 
PDM. This handling is designed to map to simulation data.

5.4.7  Using PDMs with Operators   

Operators defined for matrices are also defined for PDMs. For example, the 
square of each element in the first dependent matrix of radar can be calculated by:

radar(1)^2

ans (a pdm) =

 RCS |          Range    % Error
-----+--------------------------
0.01 | Radar 1  28.2699  0.05381
     | Radar 2  33.9703  0.06803
-----+--------------------------

Notice the output is also a PDM.

Operations between two PDMs are defined such that the operation is performed 
elementwise on each pair of corresponding matrices. These operations are restricted 
to PDMs with identical dimensions.

For example, the average value of Row 1 and Row 2 is calculated by:

(radar(1,1) + radar(2,1))/2

RCS | 
-----+----------------
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0.01 | Radar 1   5.812
0.02 | Radar 1  18.38 
1    | Radar 1  28.07 
2    | Radar 1  38.87 
6    | Radar 1  58.135

Operators can also be used between matrix objects (including vectors and scalars 
as well as matrices) and PDMs. In this case, the operation is performed between the 
matrix object and each dependent matrix in the PDM. The result of the operation is a 
PDM with the same domain as the PDM operand.

For example, the identity matrix is added to each dependent matrix using the 
expression:

radar + eye(2,2)

ans (a pdm) =

 RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1   6.311  0.01   
     | Radar 2   6.313  1.07   
-----+-------------------------
0.02 | Radar 1  17.79   0      
     | Radar 2  19.97   1.07   
-----+-------------------------
1    | Radar 1  27.28   0.08   
     | Radar 2  29.86   1.04   
-----+-------------------------
2    | Radar 1  36.51   0.04   
     | Radar 2  42.23   1.09   
-----+-------------------------
6    | Radar 1  54.11   0.01   
     | Radar 2  63.16   1.02   
-----+-------------------------

A scalar value can also be used in operators with a PDM. The operation will be 
applied to each matrix element and the scalar.

5.0 * radar(1)

ans (a pdm) = 

 RCS |          Range   % Error
-----+-------------------------
0.01 | Radar 1  26.555  0.05   
     | Radar 2  31.565  0.35   
-----+-------------------------
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5.4.8  Using Functions with PDMs   

When a PDM is used as an input to a function, the function is applied to each 
dependent matrix (Figure 5-5). If the channels keyword is available and is used, 
the function will be applied to each channel. 

For example, if xpdm is a step response of a system with n inputs, m outputs over 
p time points, then is a  PDM whose kth element 
contains the maximum element of the kth matrix in xpdm (the maximum output 
for every time point).2 The result of any function that accepts the channels 
keyword is always a matrix the size of the dependent matrices in the PDM (see 
Figure 5-6).

PDMs use optimized internal looping to speed up the total computation time. 
Therefore, using a single PDM as a function input is much more efficient than 
looping through a set of separate matrices with MathScript commands. 

Next you will use the intrinsic function max( ) to illustrate the flexibility of PDMs. 
max( ) finds the maximum over a specified subset of the PDM data. 

Figure 5-5 Functions of PDMs

y pdm1

y pdm2

↓

y pdmn

=

=

=

f xpdm1( )[ ]

f xpdm2( )[ ]

↓
f xpdmn( )[ ] 

 
 
 
 
 
 

ypdm=f(xpdm)

2. Where max(xpdm,{channels}) is an n x m matrix where (i,j) element is the maximum of the 
vector of the (i,j) elements of all the dependent matrices.

y ma x xp dm( )= 1 1×( ) p×
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To find the maximum range for both Radar 1 and Radar 2 over all RCS values, 
apply the function to all rows of the first column of dependent matrices. Type:

maxrad = max(radar(:,1))

maxrad (a pdm) =

 RCS |         
-----+---------
0.01 |    6.313
0.02 |   19.97 
1    |   29.86 
2    |   42.23 
6    |   63.16

max( ) treats the PDM as a series of matrices, returning a PDM with the same 
domain as radar. It loops over all the domain points (values of RCS), finds the 
largest value each dependent vector contains (in this case, the Range value), and 
returns that scalar value as the dependent matrix corresponding to the same 
domain point in the output PDM. 

You might want to know the maximum ranges for Radar 1 and Radar 2 separately. 
In this case, the PDM is treated as a matrix of vectors, each corresponding to a 
channel of the PDM. To use max( ) in this manner, invoke the channels keyword:

maxvals = max(radar(1:2,1), {channels})

maxvals (a column vector) =
53.11
63.16

Figure 5-6 Functions of a PDM Over Channels
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y=f(xpdm,{channels})
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The range for Radar 1 corresponds to the (1,1) channel, and the range for Radar 2 
corresponds to the (2,1) channel. The (1,1) element of the output matrix, 53.11, is 
the maximum value for the range of Radar 1 over all the RCS values. The second 
element is the maximum value for Radar 2.

5.5  Dynamic System

The dynamic system class represents systems of time-dependent equations for 
modeling input/output relationships. In general, there are many different kinds 
of dynamic systems, with many different representations.

Xmath supports linear, time-invariant systems. These can be continuous (systems 
of differential equations) or discrete (systems of difference equations). Two 
specific representations are provided: state-space systems and transfer functions. 
Both are created with the system( ) function and are discussed later. Sampling 
times (0 for continuous systems and nonzero for discrete) are automatically stored 
within a dynamic system object.

The dynamic system class is closely tied to the PDM class. Simulations or 
dynamic systems are defined using a PDM to represent inputs, and return a PDM 
representing the outputs. The * (product) operator has also been overloaded 
(defined) such that system*input_pdm performs a simulation over the data in 
input_pdm.

5.5.1  State-Space Systems

A state-space dynamic system stores the A, B, C, and D matrices associated with 
the following equation:

xk 1+ A xk Buk+=

y C x D u+=

dx
d t
------ Ax B u+=

yk Cxk D uk+=

for continuous systems for discrete systems
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x is the state vector (with initial conditions X0), u is the input vector, and y is the 
output vector. All matrices are stored, even if they are null.

■ State-space systems can be single-input/single-output (SISO) or multiple-
input/multiple-output (MIMO).

■ Names can be attached to each of the inputs and outputs and states of a state-
space system. This capability is particularly useful with MIMO systems. 

5.5.2  Transfer Functions

A transfer function is described as:

The notations H(s) and H(z) are common for transfer functions. s represents the 
Laplace transform variable, and z represents the z-transform variable. A transfer 
function represents a dynamic system in terms of numerator and denominator 
polynomials. 

■ A transfer function is proper if the order of the numerator is less than or equal 
to the order of the denominator. 

■ It may sometimes be convenient to use an improper or noncausal transfer 
function (to represent an ideal differentiator, for example). Xmath allows you 
to define an improper transfer function, but restricts the types of analyses you 
can perform. You can find the frequency response of an improper transfer 
function, but not the time response. An improper transfer function cannot be 
connected with state-space systems or converted to state space form.

■ Currently, only SISO transfer functions are supported.

■ Names can be attached to the inputs and outputs of a system in transfer-
function form. 

■ To perform a time-domain simulation (Sys  × u), multiply a system by a PDM 
whose columns contain the input vector(s) for the simulation(s). (See 
5.5.5 Time Response, p.234).

y s( )
u s( )
----------- H s( ) num s( )

den s( )
--------------------= =

y z( )
u z( )
----------- H z( ) num z( )

den z( )
--------------------= =

for continuous systems for discrete systems
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5.5.3  Creating Systems

Dynamic systems can be created with the system( ) function. If four compatibly-
sized matrices are given as inputs, a state-space system is formed. 

a=[1,2;3,4]; b=[.1,-.1,1; 2,-.2,2]; c=[3,3]; d=[.4,-.4,4];
ssSys=system(a,b,c,d, {inputNames=["red","white","blue"],
  outputNames=["Flag"], stateNames=["Alaska","Nebraska"],dt=.01})

ssSys (a state space system) =

  A
  1    2
  3    4

  B
  0.1    -0.1    1
  2      -0.2    2

  C
  3    3

  D
  0.4    -0.4    4

  X0
  0
  0

State Names 
----------- 
Alaska    Nebraska 

Input Names
-----------
red      
white    
blue     

Output Names
------------
Flag    

System is discrete, sampling at 0.01 seconds.

A handy shortcut for creating state-space systems with an all-zero D matrix is to 
use a NULL-matrix specifier ([]) for the D matrix. This automatically sets the D 
matrix to a zero matrix, with row size equal to the row size of C and column size 
equal to the column size of B.

If dt was not given a value, ssSys would have been continuous (dt defaults to 0).
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The size of a system object is defined by the number of outputs, inputs, and (in 
the case of a state-space system) the number of states it has. You can use the size( ) 
function to find these dimensions. 

[out,in,states]=size(ssSys)?

out (a scalar) =   1

in (a scalar) =   3

states (a scalar) =   2

If a pair of polynomials is given, a transfer function results:

n=makepoly(polynomial([1,-1;2,-2],"s"));
d=polynomial([-2,1;1,-2],"s");
tfSys=system(n,d,{inputNames="In", outputnames="Out"})

tfSys (a transfer function) =
               
     s(s + 1)
  ----------------
                  
  (s + 1)(s + 3)

  initial integrator outputs
  0
  0
  Input Names
  -----------
  In    

  Output Names
  ------------
  Out    

  System is continuous

The various parts of a transfer function or a state-space system can be extracted 
with the abcd( ), numden( ), period( ), and names( ) functions (see the MATRIXX 
online Help).

Using Operators with Dynamic Systems

Operators have also been defined to perform connections between dynamic 
systems. Suppose you have dynamic systems Sys1 and Sys2, where outputs are y1 
and y2 and inputs are u1 and u2, respectively. The statements in Table 5-4 would 
then be true.
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Creating Subsystems by Indexing into Dynamic Systems

You can index into a dynamic system to create a subsystem comprising a subset of 
the original inputs and outputs, as shown in Table 5-5.

Table 5-4 Operations on Dynamic Systems 

Sys = Sys1 + Sys2 Defined such that y = y1 + y2. 
The inputs are tied together such that u=u1=u2.

Sys = Sys1 – Sys2 Defined such that y = y1 – y2. 

In the unary case, Sys = –Sys2 is defined such that y = –y2 
(Sys1=system([ ],[ ],[ ],[ ])).

Sys = Sys2 * Sys1 The cascade connection of Sys1 followed by Sys2. The 
output of Sys is y2 and the input is u1.

Sys = [Sys1;Sys2] Defined such that y = [y1;y2] and u=u1=u2 (inputs are tied 
together).

Sys = [Sys1,Sys2] Defined such that y = y1 + y2 and u = [u1;u2].

Sys1

Sys2

u

u1 y1

y2u2

y
+

Sys1

Sys2

u

u1 y1

y2u2

y
-

Sys1 Sys2
u

u1 y1 u2 y2
y

Sys1

Sys2

u

u1 y1

y2u2

y

Sys1

Sys2

u1 y1

y2u2

y
+
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If you are familiar with input/output notation, you may feel that the above 
definition (outputs first, inputs second) of indexing seems reversed. It was 
designed with the traditional definition of a transfer function in mind, where 
outputs are specified first: y(s) = Sys(s) × u(s). (This definition also led to Xmath’s 
definition of Sys × aPDM to perform simulation, since in that case y(t) = Sys × u(t)). 
For a MIMO system with m outputs and n inputs, y is an m × 1 vector and u is n × 
1; thus, it makes sense for Sys to be m × n. We can see this if we index into ssSys 
from p.229:

Sys2=ssSys(1,3)

Sys2 (a state space system) =

  A
  1    2
  3    4

  B
  1
  2

  C
  3    3

  D
  4

  X0
  0
  0

  State Names 
  ----------- 
  Alaska    Nebraska    

  Input Names
  -----------
  blue    

  Output Names
  ------------
  Flag    

  System is discrete, sampling at 0.01 seconds.

Table 5-5 Indexing Into a Dynamic System 

Sys = Sys1(i,j) Defined to be a system such that y=y1(i) and u=u1(j). i and j 
can both be vectors as well, in which case multiple inputs and 
outputs will be extracted. 
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The output is a SISO dynamic system containing the third column of the B and D 
matrices.

5.5.4  Functions for Manipulating Dynamic System Objects

Table 5-6 briefly describes functions commonly used to manipulate systems. To 
see a full description of each function, see the MATRIXX online Help.

Table 5-6 Functions Commonly Used to Manipulate Systems 

abcd( ) Extracts the component A, B, C, and D matrices from a state-
space system object. In addition, it returns the initial conditions 
on the states if a fifth output argument is requested.

abcd( ) can be called on systems in either state-space or 
transfer-function form. If the system is a transfer function, the 
conversion to state-space is done internally to return A, B, C, 
and D, although the format of the variable itself remains 
unchanged. The transfer function must be proper.

discretize( ) Converts a continuous system to discrete form. 

makecontinuous( ) Converts a discrete system to continuous form.

numden( ) Returns the numerator and denominator polynomials 
comprising a SISO system in transfer function form. If the 
system is in state-space form, an internal conversion is 
performed to find the transfer function equivalent, but the 
format of the system variable itself remains unchanged. State-
space systems used as inputs to numden( ) must be SISO. Note 
that common roots in the numerator and denominator 
polynomials are not canceled.

period( ) period( ) extracts the sample period (in seconds) of a system. If 
the system is continuous, period( ) returns zero. 

names( ) Extracts matrices of strings representing the input, output, and 
(if the system is in state-space form) state names of a system. It 
works much the same as described for PDMs on p.218.

check( ) Can be used to return a Boolean indication of whether a system 
is in transfer-function or state-space form, discrete, continuous, 
or stable. In addition, check can be used with the convert 
keyword to change a system’s representation between SISO 
state-space and transfer-function forms. 
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5.5.5  Time Response

The behavior of a dynamic system as a function of time in response to external 
stimuli is referred to as the system’s time response. Xmath can simulate the 
response of a dynamic system to various inputs to obtain the system's time 
response. This is accomplished with the * operator between dynamic systems and 
parameter-dependent matrices (PDMs) and with one or more of the functions in 
Table 5-7.

Borrowing from the convenient frequency response notation for a system where 
y(s) = H(s)*u(s), Xmath defines the operation system ∗ PDM as a time domain 
simulation. Thus, for any dynamic system Sys (continuous or discrete) and for a 
PDM u representing the external stimulus as a function of time, the operation 
y=Sys∗ u creates a PDM y that contains the outputs of the system as a function of 
time.

For a dynamic system with ny outputs and nu inputs, the input vector is defined 
to be nu × 1 and the output vector is ny × 1. Thus, the input PDM u should be ny × 1 
× Nsamp, where Nsamp is the number of time points in u.

■ The input PDM must have a regular domain. 

■ If the system is discrete, the domain intervals must be equal to the system’s 
sampling period. 

■ If the system is continuous, it is discretized using the exponential (zero-order 
hold) method, with the sampling interval set equal to the input domain 
interval spacing. For accurate results, make sure this sampling interval is 
small enough that discretization effects are negligible.

If you desire to run several simulations with different inputs, you can define a 
PDM where columns contain the input vectors for the different simulations. Then 
u will be ny × q × Nsamp, where q is the number of different simulations to be run. 
The resulting y will be ny × q × Nsamp, with each column of the PDM 
corresponding to a different simulation.

Table 5-7 Time Response Functions 

impulse( ) Computes the impulse response of a system.

initial( ) Computes the unforced response of a system to a given initial 
condition.   

step( ) Computes the step response of a system.   

defTimeRange( ) Computes a default time vector for simulations.
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See 4.3.15 Strip Plots, p.145 for a explanation of how PDMs are plotted.

5.6  Strings

A string object is a sequence of characters enclosed by double quotes. To be 
recognized as a string, an object must be created with double quotes or be the 
output of the string( ) function, which converts numbers to strings.

■ You can concatenate strings with the plus (+) operator.

c="California";s="Sacramento";
str=""nThe capital of "+c+ " is "+s+"."

str (a string) =   
The capital of California is Sacramento.   

■ You can concatenate strings and then use them on the Xmath command line.

alias mypath "C:/myhomedir/myexamples/"
display mypath + "engine"
execute file = mypath + "engine"

■ You can group multiple strings into string matrices (also called tables) using 
the same punctuation as matrices.

r=" rest"; i=" ice"; c=" compression"; e=" elevation";
rice=[r,i,c,e];ouch=[82,73,67,69];
sport=[char(ouch)',rice']

sport (a rectangular matrix of strings) =

  R     rest           
  I     ice            
  C     compression    
  E     elevation

■ For strings, size( ) returns the number of rows and columns of the whole 
string matrix.

size(sport)

ans (a row vector) =   4    2

To find the total number of elements (characters) in a string, use length( ).
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length(sport)

ans (a scalar) =   35

5.6.1  Converting Strings and Numbers

Numbers can be converted to strings using the string( ) function, and strings to 
numbers using makematrix( ).

aStr=string(32)

aStr (a string) =   32   # result is a string 

aNum=makematrix(aStr)

aNum (a scalar) =   32   # result is a scalar

The displayed result looks the same; only the object type has changed.

The ascii( ) function returns the ASCII representation of a single character. The 
char( ) function returns the character representation of a single character.

ascii("A")

ans (a scalar) =   65

char(65)

ans (a string) =   A

5.6.2  Special Characters in Strings

Sometimes you may want to format your string output. You can insert a newline 
with the sequence "n or char(10). To insert a tab, use the sequence "t or char(9). To 
cause double quotes to appear in a string, use a pair of double quotes ("") or 
char(34).

str=""n2 feet, 3 inches can be shortened to " + "2'3"".";

display str

2 feet, 3 inches can be shortened to 2'3".

You can use the DISPLAY command to display a string, variable, or the result of 
an expression; only the string is displayed (the message ans (a string) = is 
omitted.)
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str1="A string must be enclosed in ";
str2="quotation marks. For example:"; nl=char(10); q=char(34);
test=nl + str1 + nl + str2 + nl + char(9) + char(10) + q +... 

"What's next?" + q;
display test

A string must be enclosed in quotation marks. For example:

"What's next?"

For more examples see the MATRIXX online Help DISPLAY topic.

5.6.3  Manipulating Substrings

You cannot use conventional indexing (see p.194) to index into a string, but you 
can index into a matrix of strings. 

Create a matrix of strings:

mat=[65:69;97:101];m=char(mat(1:2,:))

m (a rectangular matrix of strings) =

  A    B    C    D    E 
  a    b    c    d    e 

Index into a matrix of strings:

bball="The N"+m(1,2)+m(1,1)+...
" is where the action is."

bball (a string) =   The NBA is where the action is.

You can use the index( ) function to find the starting location of a substring within 
a string. 

i=index(bball,"ac")

i (a scalar) =   22

As mentioned earlier, length( ) returns the total number of characters in a string. 
The function stringex( ) extracts a substring from a string, and the function 
delsubstr( ) deletes all instances of a substring. Look up these functions in the 
MATRIXX online Help, and note how you can use them to alter a string, as shown 
in the following example:

bball2=stringex(bball, i, length(bball))

bball2 (a string) = action is.
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bball3=delsubstr(bball, bball2)

bball3 (a string) = The NBA is where the 

bball4=bball3+"money is."

bball4 (a string) = The NBA is where the money is. 

5.7  Lists

Lists are created with the list( ) function. A list object can be thought of as a 
collection or set of other objects. Each element in the list can be of any arbitrary 
class, including another list. This makes nested lists possible. A list is one-
dimensional, in that it can only be addressed with a single index. The following is 
an example list:

title="Gasoline Prices"; t=1:12; d=1:100;
fg=makepoly([1,2,-.9],"t"); p="p=polyval(fg/t)/d;";
L=list(title,t,d,fg,p)

L (a list with 5 elements) =

1:
  Gasoline Prices    

2:
  1 : 1 : 12
3:
  1 : 1 : 100

4:
   2          
  t + 2t - 0.9
5:
  p=polyval(fg/t)/d;

A single index can be used to access entire objects from the list.

p=polyval(L(4),L(2))'

p (a column vector) =

    2.1
    7.1
   14.1
   23.1
   34.1
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   47.1
   62.1
   79.1
   98.1
  119.1
  142.1
  167.1

The plus (+) operator can be used to concatenate two lists.

5.8  Index Lists

An index list contains a list of indices or pointers into a vector, matrix, or PDM. 
An index list looks like a matrix, but matrices cannot be used as lists. The function 
find( ) outputs an index list, and you can create your own with indexlist( ). 

An index list has either one, two, or three columns. If it has one column, it can be 
used to index into a vector. If it has two columns, it can be used to index into a 
matrix; the first column contains row pointers, and the second column pointers. If 
it has three columns, it can be used to index into a PDM; the first column is used 
for domain pointers, the second for row pointers, and the third for column 
pointers.

set seed 0
m=hessenberg(random(4,4))

m (a square matrix) =

   0.211325    -0.563151    0.529676     0.288135  
  -1.31969      1.47381     0.313928     0.0170223 
   0           -0.599434    0.164669     0.00777988
   0           0           0.173159 -0.217164

Find the row and column location of each element smaller than 0, and assign the 
value 3 to it:

lis=find(m<0)

lis (an index list) =

  1    2
  2    1
  3    2
  4    4
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m(lis)=3

m (a square matrix) =

  0.211325    3          0.529676    0.288135  
  3           1.47381    0.313928    0.0170223 
  0           3          0.164669    0.00777988
  0           0          0.173159    3   

The following example shows the use of a three-column indexlist with a PDM. 
(For a complete discussion of PDMs, see 5.4 Parameter-Dependent Matrix (PDM), 
p.207.) Using the above matrix, create a PDM with two dependent matrices:

mpdm=pdm(m,[1,2])

mpdm (a pdm) =

domain |        Col 1     Col 2    Col 3     Col 4     
-------+-----------------------------------------------
     1 | Row 1  0.211325  3        0.529676  0.288135  
       | Row 2  3         1.47381  0.313928  0.0170223 
-------+-----------------------------------------------
     2 | Row 1  0         3        0.164669  0.00777988
       | Row 2  0         0        0.173159  3         
-------+----------------------------------------------------

The goal is to find all elements of mpdm in row 2 of a dependent matrix that are 
greater than 0 and less than .5 and set them to 0.1. To do this, first find the location 
of all elements of mpdm that meet the criteria:

mlis=find((mpdm > 0) & (mpdm < .5))

mlis (an index list) =

  1    1    1
  1    1    4
  1    2    3
  1    2    4
  2    1    3
  2    1    4
  2    2    3

The first column shows the domain, the second the row, and the third the column. 
Extract the portions of the index list that index elements in row 2 of the dependent 
matrices.

row2=find(mlis(:,2)==2)

row2 (an index list) =

  3
  4
  7
240



5

5
Data Objects and Operators
Create an indexlist that locates only the elements in row 2 of a dependent matrix 
that meet the criteria used to create mlis.

rlis=indexlist(mlis(row2,:))

rlis (an index list) =

  1    2    3
  1    2    4
  2    2    3

Now, set all elements of mpdm that are greater than 0, less than .5, and in the 
second row to 0.1:

mpdm(rlis)=0.1

mpdm (a pdm) =

domain |        Col 1     Col 2    Col 3     Col 4     
-------+-----------------------------------------------
     1 | Row 1  0.211325  3        0.529676  0.288135  
       | Row 2  3         1.47381  0.1       0.1       
-------+-----------------------------------------------
     2 | Row 1  0         3        0.164669  0.00777988
       | Row 2  0         0        0.1       3         
-------+----------------------------------------------------
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This chapter describes how you can combine MathScript expressions, statements, 
commands, and functions to create MathScript programs. 

Xmath handles MathScript functions (MSFs) and MathScript commands (MSCs) 
you write in the same manner as it does Integrated Systems commands and 
functions (see 3.5 Using Predefined Functions and Commands, p.85). MSCs and MSFs 
can call other MSCs and MSFs, or call themselves recursively.

6.1  Overview

This section explains how to create a MathScript function (MSF) and a MathScript 
command (MSC), giving you a brief overview of the scripting process along the 
way. In subsequent sections, scripting will be explained in detail, and we will use 
these samples as a point of reference. 

6.1.1  Creating a Sample MSF

User-defined MSFs behave exactly like predefined functions; they take input 
arguments, perform the statements in the body of the function using these 
arguments, and return one or more outputs. Input arguments are not modified.
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The sample MSF halfwave (Example 6-1) converts all values less than zero to the 
value of zero. Go to your Xmath working directory and use a text editor to create 
a file named halfwave.msf as shown.

Example 6-1 halfwave.msf

#{
 Function halfwave() has 1 required input argument
}#

Function out1 = halfwave(in1)   # function declaration line
out1 = in1

     out1(find(in1 < 0)) = 0
endFunction

The file begins with an optional block comment (text enclosed in #{ }#). If 
supplied, the comment serves as Help on this function if you supply a Help file 
(see 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.249).1 The 
function declaration is required. This declaration defines the function name, the 
number and type of input arguments, and the number of output arguments. 

To use halfwave, call the function just like any intrinsic MathScript function.

y = [1,0,-1,0,1,0,-1,0];
z = halfwave(y)

z (a row vector) =   1    0    0    0    1    0    0    0

6.1.2  Creating a Sample MSC

While MSFs return one or more new objects as outputs and cannot modify input 
arguments (pass by value). MSCs do not return any values, but they can modify 
input arguments (pass by reference).

As an example of a typical MSC, consider the command graphit (shown in 
Example 6-2), which takes a single input and plots it on a log-log scale; a legend is 
supplied if the input is a matrix. Inputs other than a vector or matrix invoke an 
error message. Go to your Xmath working directory and use a text editor to create 
the file shown in Example 6-2.

Example 6-2 graphit.msc

#{
GRAPHIT plots a numerical input.

1. This text will be displayed in the Local Help window when you type help halfwave in the 
Command window command area.
244



6

6
MathScript Programming
}#

Command graphit indata    # command declaration
if !is(indata,{scalar}) & !is(indata,{string})
  if is(indata,{matrix,!vector}) == 1
    plot (indata,{legend})?
  else
    plot (indata,{xlog,ylog,xmax=length(indata),
      ymin=min(indata), ymax=max(indata)})?
  endif
else
  error("Input is not worth plotting!","C")
endif

endCommand

The first line of the file after the optional block comment (#{ }#) section is the 
command declaration. The command declaration is required. It defines the 
command name, and the number and type of input arguments. Notice that the 
arguments are not in parentheses as they are in functions.

To test this command, call it as follows:

a=[1:.01:3];[,c]=size(a);
k = a(1,100:125); 
m = k .*. sin(a);
v=[a*5, a*2, a*4, a];
graphit c
graphit m
graphit v

In these examples, the argument to graphit is a single variable that requires no 
parsing; in cases where the argument is a simple token—a single variable or 
constant, you can separate the command name from the first argument with 
white space only, and it works. If the first argument is more complex, such as an 
expression, you must also place a comma after the command name. A comma 
separating the command name from the first argument always works. The 
example below illustrates this point.

Create the following MSC in your working directory:

Command add3nums arg1, arg2, arg3
arg1+arg2+arg3?
endCommand

The following usages of this command all work:

add3nums 1,2,3
add3nums a,b,d
add3nums a,b-c,d
add3nums a,b,d-c
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The following produces an error message:

add3nums a-c,b,d

If you place a comma after the command name, however, the command works:

add3nums, a-c,b,d

6.1.3  General Rules for MathScript Programs

There are two types of names in MathScript programming: the MathScript name 
and the filename.

■ MathScript names follow the same rules as variable names (see Rules for 
Names on p.69).

■ MSF and MSC filenames must be lowercase, and they must match the 
MathScript name.

■ All filenames must be unique. For example, creating both name.msf and 
name.msc is ambiguous (the filename for Xmath to call is undefined). 

6.1.4  MathScript File Formats

The file formats are shown in Figure 6-1 and Figure 6-2.  

Figure 6-1 MSF File Format

#{
Optional Block Comment
that may be used for Help

}#

Function [out1,…outn]=fun_name(in1,…inN,{keywds})

# MathScript instructions that operate on the 
# arguments.
Optional Return

endFunction
…

MathScript Function Format
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Comment Header

The optional comment at the top of the file may serve as the online Help entry for 
your MSF or MSC. To display your Help for your MSF or MSC in the Local Help 
window type:

help script_name

Declaration

The first line of code following the comment Help block is the declaration, which 
defines the number of input and output arguments. Required arguments are 
placed before the braces, while keywords are defined inside the braces. 

■ Files must end with the appropriate end statement (endCommand or 
endFunction) followed by a carriage return (blank line).

■ There can only be one user-defined command or function in an MSF or MSC 
file (see Example 6-3, p.254 and Example 6-4, p.255 for extended examples of 

Figure 6-2 MSC File Format

MathScript Command Format

#{
Optional Block Comment
that may be used for Help

}#

Command command_Name in1,…inN,{keywds}

# MathScript instructions that operate on the # 
arguments.

Optional Return

endCommand
…

NOTE:  See 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.249 for 
additional information about creating online Help for your MSF or MSC. 
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MSCs and MSFs). MSOs (see p.259) allow for more than one function or 
command to be declared in a file. An optional return statement can be used to 
exit before the endFunction or endCommand statement.

Void Function Declaration

Although the discussion and examples show both input and output arguments, 
you can define a void function that has no outputs. The syntax of this function 
declaration is as follows:

function [ ] = void_func_name(in1,...inN, {keywds})

6.1.5  MathScript Programming

This section gives an overview of MathScript programming. Some of the 
functions mentioned here are also discussed in 6.3 Programming, p.256. 

For a detailed description of any function or command provided by Integrated 
Systems, see the MATRIXX online Help.

Assigning Default Values

Optional arguments and keywords typically have default values that will be used 
if the argument is not specified. The DEFAULT command assigns a default value 
to the specified argument. In the following function syntax, kwd1 is given a 
default value of 5.0, and kwd2 is assigned "Earth" by default.

function [out1,out2,out3]=funName(in1,in2,{kwd1,kwd2})
DEFAULT kwd1 = 5.0
DEFAULT kwd2 = "Earth"

...

Output Keywords

For MathScript programs, output keywords provide a feature whereby desired 
output can be selected directly by name rather than positionally. For example, 
consider an MSF defined with this prototype:

[o1,o2,o3] = function myfun(i1)

To access only the third output of an MSF, use one of the following methods: 
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■ Skip the first two outputs like this:

[,,thirdout] = myfun(a)

■ Use output keywords like this:

[thirdout = o3] = myfun(a)

For a general discussion of keywords, see p.86. 

Calling Void Functions

When you call a void function, you must use the following syntax:

[ ] = void_func_name(...)

See Void Function Declaration on p.248.

Variable Scoping

All variables created within MathScript functions and commands are local unless 
you use an explicit partition name (partitionName.variableName). Remember, you 
cannot change partitions within a program.

For MSFs, input arguments are passed by value. This means that functions cannot 
alter the values of their arguments. Output arguments requested by the caller are 
copied back to the scope of the caller.

For MSCs, arguments are passed by reference and can alter the values of their 
arguments, rename them, or delete them altogether if the argument is a variable 
name.

6.1.6  Creating Online Help for User-Defined MSFs and MSCs

You can provide online Help for your MSF or MSC in one of the following ways:

■ Provide a Help file in the same directory as your MSF or MSC.

■ Allow Xmath to use the block comment at the top of your MSF or MSC if you 
do not provide a Help file.

NOTE:  If you get an error message from Xmath indicating that your file is 
incomplete, your file may be missing an ending carriage return.
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When you try to bring up Help for your MSF or MSC by typing the following 
command

help script_name

Xmath follows these steps:

1. Xmath searches for the Help topic name in the standard Xmath Help project 
file (help.hpf). 

If Xmath finds your Help topic, it displays it in the MATRIXX Help window.

2. If Xmath does not find an Xmath Help topic, it looks in the local Help project 
file (local.hpf).

If Xmath finds your Help topic, it displays it in the Local Help window.

3. If Xmath does not find the Help topic in the local Help project file, it looks in 
the same directory as your MathScript file for a Help file with the name 
script_name.html,script_name.htm, or script_name.txt.

If Xmath finds your Help file, it displays it in the Local Help window and 
appends the topic name to the local.hpf file.

4. If Xmath does not find a Help file, it goes to the MathScript itself, extracts the 
text in the comment section at the top, and creates a text file (script_name.txt) 
that contains the extracted information.

On UNIX systems, Xmath stores the script_name.txt file in your home directory. 
On Windows systems, Xmath stores the script_name.txt file in your home 
directory if the home directory is defined; otherwise, Xmath stores the file in 
%XMATHTMPDIR%.

Xmath displays the Help topic in the Local Help window and appends the 
topic name to the local.hpf file.

6.1.7  Using User-Defined MSFs and MSCs

Your MSF or MSC can be called in the same way as Xmath functions and 
commands. However, Xmath must know where to look for them.

NOTE:  On UNIX systems, local.hpf is in your home directory. On Windows 
systems, local.hpf also exists in your home directory if the home directory is 
defined; otherwise, you can find local.hpf in %XMATHTMPDIR%. 
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Search Paths

When you call a MathScript program, Xmath looks for it in the search path using 
the following criteria:

■ The current working directory (.) is put in the search path when Xmath starts 
up. 

■ The search path is searched only upon the first call to the MSF or MSC.

■ You can use DEFINE and UNDEFINE to select or deselect an MSF or MSC.

For example, if halfwave.msf is not found in the search path, you receive the 
following message:

File halfwave not found

If this occurs, add the new directory to the search path with the command set path 
"directory" where directory can be any valid directory path string. Assuming 
halfwave.msf is in the subdirectory myScripts, you add its path as follows:

set path "myScripts"
show path

1) .
2) myScripts

Manipulating Search Paths

If the file graphit.msc is in the directory test, you can add this entry to the Xmath 
search path as follows:

set path "test"
show path

1) .
2) myScripts
3) test

To remove an entry from the Xmath search path, use the REMOVE command and 
the path number.

remove path 2
show path

1) .
2) test
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To handle paths through a file selection box, use Select File→Set Path. In the 
Directories field (of the Set Path dialog shown below), double-click on the directory 
you want for your search path, and then click OK.

DEFINE

By default, Xmath looks for built-in functions and commands (see 3.5 Using 
Predefined Functions and Commands, p.85) before searching user paths. The 
DEFINE command explicitly associates an MSF or MSC with a MathScript name. 
It is useful for accessing functions that are not in the search path. For example, the 
Xmath function hilbert( ) is stored in the following location:

whatis hilbert

hilbert is an ISI function (path/hilbert.xf)
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where path is the path to your Xmath installation. Suppose we have an MSF called 
hilbert.msf located in a subdirectory called funs, and we would rather use it for 
Hilbert computations. To make and verify the change, type:

define hilbert, {directory = "funs"}
whatis hilbert

hilbert is a Mathscript function (funs/hilbert.xf)

All calls to the hilbert( ) function will now use the function located in funs instead 
of the predefined function. To retrieve the predefined function, release your local 
version of hilbert( ) (and then verify with the whatis( ) function):

undefine hilbert
whatis hilbert

hilbert is an ISI function (path/hilbert.xf)

For more information on DEFINE and UNDEFINE, see the MATRIXX online Help.

MathScript Program Compilation and Execution (.xf, .xc)

When a program is defined or called for the first time, Xmath compiles the 
program and stores the resulting binary code in an .xf or .xc file, depending on the 
file type. See Figure 6-3.

When halfwave is called again, the Xmath interpreter checks the last modified 
dates of halfwave.xf and halfwave.msf. If halfwave.msf is more recent, the ASCII 
.msf file is recompiled, overwriting the existing .xf file. After compilation, the new 
halfwave.xf binary file is executed. 

You can use the following command to turn off file usage time stamp checking:

SET AUTOCOMPILE OFF 

If you know that you will not be modifying a source file, this can improve the 
speed of a task such as calling an MSF in a loop.

Figure 6-3 Compile Process for an MSF

halfwave.msf halfwave.xf

MathScript ASCII Source Compiled MathScript Code

(compile)
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If a new version of Xmath is installed, old local .msf and .msc files are 
automatically recompiled.

6.2  Examples

Example 6-3 provides a sample user-defined MSF called pdm2mx. This MSF 
changes a PDM to a matrix of the same dimensions as the input matrix. This is to 
reverse any PDM formatting so that you can compare a PDM’s dependent 
matrices with the source matrix for the PDM.

Example 6-3 pdm2mx.msf

#{------------------------------------------------------------------
Destructs a PDM to a matrix of the same dimensions as the input 
matrix. Idea is to reverse any PDM formatting so that you can compare 
a PDM's dependent matrices with, for example, the original matrix the 
PDM was created from.

Syntax: Function [mat,same]=pdm2mx(m,p)
Inputs: m A matrix to compare to the elements of a PDM.

p A PDM with elements you wish to organize in a 
matrix of the same dimensions as m.

Outputs: mat A matrix of elements of p formatted according to m.
same If mat and m are the same, same=1. If not, same=0.

--------------------------------------------------------------------
}#
Function [mat,same]=pdm2mx(m,p)
[mr,mc]=size(m); [pr,pc,pl]=size(p);

if is(m,{matrix}) & is(p,{pdm}) & mr*mc==pr*pc*pl

  if mr==pr & mc==pc
    mat=makem(p')';
  else
    mat=makem(pdm(makem(p')',{rows=mr, columns=mc}));
  endif
if any(mat-m) <> 0; same=0; else same=1; endif

else
  error("Matrix and PDM must have same number of elements.","C")
endif
endFunction
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A call to pdm2mx might be:

b=rand(6,3)? bp=pdm(b,{rows=3,columns=6})
[,same]=pdm2mx(b,bp)

The command plotspectrum in Example 6-4 takes PDM input and plots the 
original wave and its magnitude spectrum in the Graphics window. plotspectrum 
uses check to see if the input is a PDM. If the input is a PDM, the length of the 
PDM channels is returned from length( ) to the variable len.

Example 6-4 plotspectrum.msc

#{plotspectrum first uses check() to see if the input is a PDM. If the input is 
a PDM, the length of the PDM channels is returned from length() to the variable 
len. The domain of the PDM is a vector stored as in am.}#

command plotspectrum input 

stat = check(input, {pdm,abort});len = length(input);
dm = domain(input);

#compute the fft of the input, and the frequency range

qPDM=fft(input,{channels});
res =(len-1)/(len*(dm(len)-dm(1)));
dmF=(0:res:(len-1)*res);
output = pdm(abs(makematrix(qPDM)), dmF);

#{set up the frequency axis label. The x label on the spectral graph is 
generated using + to append strings together. The final string is stored in 
xLab.}#

xLab = "Frequency (resolution = " + string(res) + ")";

#{ The first call sets up the plot format. By default in the first graph, the 
time series graph is placed in row 1.}#

t = plot(input, 
    {rows=2,title = "original wave",
    y_lab = "amplitude", x_lab = "time (sec)"})?

#{The second plot call plots the spectrum in the second row).}#

t = plot (output, {keep, row=2, y_log, x_lab = xLab,
y_lab = "Log Magnitude", title="Spectrum"})?

endCommand

A typical call to plotspectrum looks like:

time = 1:1:256; wave = pdm(cos(5*time), time);
plotspectrum wave

The Graphics window will display the time and spectrum plots.
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6.3  Programming

This section describes MathScript functions, commands, and constructs used for 
programming.

6.3.1  Iterative and Conditional Looping Statements

Loops provide the ability to repeat a command or sequence of commands, either 
for a fixed number of iterations, or until some criterion is met. You can also exit a 
loop with the EXIT statement as described in the MATRIXX online Help.

For

The For command executes a statement or a set of statements for a specified 
number of iterations. If a statement contains a variable on which the loop_variable 
operates, the order of execution is as follows:

■ If the variable is a column vector, the order is top to bottom of the column 
vector.

■ If the variable is a matrix, the order is by columns, moving from left to right.

■ If the variable is a row vector, the order is from left to right.

The For loop syntax is as follows:

For loop_variable = vector
   statements
endFor

A line break acts as a terminator in this construct. A comma, a semicolon, or the 
DO keyword can be used. For example, the following formats are correct:

For x=1:n, statements; endFor
For x=1:n; statements; endFor
For x=1:n DO statements; endFor

While

A While loop iterates as long as a conditional expression is TRUE. The While loop 
can be structured as follows:
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While conditionalExpression
   statements
endWhile

WHILE conditionalExpression, statements; ENDWHILE
WHILE conditionalExpression; statements; ENDWHILE
WHILE conditionalExpression DO statements; ENDWHILE

If

If executes a statement or set of statements when a particular condition is met; if 
the condition is not met, any else or elseIf statements are executed. 

The syntax for an if statement is:

If condition
   statements
elseIf condition
   statements
else
   statements
endIf

A line break acts as a terminator in the above construct, or a comma, a semicolon 
or the THEN keyword can be used. For example, the following variations are 
correct:

IF condition, statements ELSE, statements ENDIF
IF condition; statements ELSE, statements ENDIF
IF condition THEN statements ELSE, statements ENDIF

For example:

if input < cost
   display "Please deposit: "+ string(cost-input)+ " cents"
elseif input > cost
   display "Your change is: "+ string(input-cost)+ " cents"
else
   display "Thank You."
endIf

Or, for example:

IF in1 | in2 < 1 THEN x=0; ELSE x=1; ENDIF
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Goto and Labels

A goto and corresponding label can be defined in a MathScript function (MSF), 
MathScript command (MSC), or MathScript object (MSO) file (not in a .tt

 file); goto cannot be used interactively. The goto command causes a jump to a 
specific label in the program. A label is a name enclosed in angle brackets; labels 
must be unique within a script. 

For example, an MSF, MSC, or MSO file might have the following:

If input > cost & change < input-cost
    GOTO exact           # jump to <exact>
endIf

#{
definition of label exact
}#
<exact> 

display "Please use exact change only."

6.3.2  Object Query Functions 

These functions are useful for testing the validity of input arguments of 
MathScript entities. To see the full set of available keywords for each function, see 
the MATRIXX online Help.

exist( )

exist( ) checks to see if an object is defined with the given name. exist( ) returns 
TRUE (1) if the object is defined, and FALSE (0) otherwise.

a = 1; exist(a)

ans (a scalar) =   1

delete a
exist(a)

ans (a scalar) =   0
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check( )

check( ) performs multiple checks on a variable and prints out error messages (by 
default); check( ) is similar to is (see p.260), but has additional features including 
error reporting, two-input comparisons, and conversions between different object 
types. Both functions are useful in programming and often used interchangeably.

check( ) only operates on variable names (you can use is if your input is an 
expression); check( ) can also compare certain properties of two inputs, such as 
sameClass or sameRate. See the check topic in MATRIXX online Help for a listing 
associated keywords.

■ By default, check( ) automatically reports an error when the keyword list does 
not match the input object. If you type:

a = [1,2,3,4];
t = check(a,{symmetric})

t (a scalar) =   0 is displayed in the log area, and the following message appears 
in the error log window:

Specified argument to check must be symmetric.

■ To turn off reporting, specify !report in the keyword list; the status of check( ) 
is still displayed in the log area, but the message is suppressed.

The abort keyword highlights a specific argument and returns an error 
message; the statement does not execute until the appropriate correction is 
made. 

■ check( ) can accept two inputs, and compare them: 

a = [1:4]; b = [3:5];
check(a,b,{samelength, !report})

ans (a scalar) =   0

■ check( ) can be used to make the following conversions:

● single channel PDM ↔ vector

● polynomial ↔ vector

● row ↔ column

When the convert keyword is used, the input is a variable; if all keyword 
requirements are met, the input variable is converted to the appropriate 
keyword format. 
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p=pdm([4:-.675:2])

p (a pdm) =

domain |        
-------+--------
     1 |   4    
     2 |   3.325
     3 |   2.65 

[status,p]=check(p,{real,matrix,convert})

status (a scalar) =   1

p (a row vector) = 4 3.325 2.65

check( ) converts p from a PDM to a vector. See the MATRIXX online Help 
check topic for a complete description of check( ) and its keywords.

is( )

is( ) accepts a variable name or an expression as an input, and then determines if 
the input variable is of the type specified in the keyword argument. is( ) returns 1 
if TRUE and 0 if FALSE.

tmatrix = [1,3;0,1];
is(eig(tmatrix), {identity})

ans (a scalar) =   0

is(tmatrix, {triangular})

ans (a scalar) =   1

is( ) can be used to report errors as follows (note that the error( ) function can only 
be used in a MathScript program):

if !(is (a,{symmetric})); error("Argument must be symmetric.")? endif

Many keywords can be used with is( ); see is( ) and check( ) in the MATRIXX 
online Help for details about these keywords. 

6.3.3  User Interface Functions

Xmath provides the simple graphical user interface functions getline( ), 
getchoice( ), pause( ), error( ), and beep( ). For more sophisticated tools, see 
Chapter 9.
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getline( )

getline( ) pops up a dialog box with a prompt asking for input.

response = getline("Enter input here:")

The dialog box appears:

You will not be able to enter text in the Command window until the dialog box is 
closed. If the string returned from getline( ) must be converted into a number, use 
the makematrix( ) function (it is overloaded to handle strings).

response (a string) =   2.333

response = makematrix(response)

response (a scalar) =   2.333

getchoice( )

getchoice( ) pops up a dialog with choices defined by an input string matrix. By 
default the dialog will have radio buttons, which allow only one choice. If the 
multiple keyword is used, the dialog will have check boxes, which allow more 
than one selection. If the keyword defaultChoice is specified, certain choice(s) are 
pre-selected when the dialog appears.

choice = getChoice("The title",["Choice 1";
"Choice 2";"Choice 3"],{defaultChoice=3}
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The output variable returns the user ’s choice(s) as a scalar or vector.

pause( )

This command displays a dialog with a button that must be pressed before Xmath 
will continue. pause( ) is commonly used in .ms files to view a graph in the 
Graphics window. 

If a string is added to the pause( ) command, that string will appear in the Xmath 
Pause dialog.

plot(1:10)
pause "press Continue to see the next plot"
plot(random(1,10))

You can disable pause( ) with the following command:

set pause off
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error( )

error ( )can only be used inside MathScript entities. You supply a severity code of 
W, C, S, or F to signify the type of error: warning, confirmation, strong warning, or 
fatal. The operating system and the error severity determine where the error is 
displayed:

■ For all operating systems, F aborts execution; the instruction remains in the 
command area with the error highlighted, and the error message displayed in 
the message area. 

■ On Windows operating systems, all error messages remain in the Xmath 
Commands window; W, C, and S settings display your message in the log area.

■ On UNIX, C and S settings display a dialog with the error message you 
specified. W writes your message to the message area. 

See the MATRIXX online Help for additional details. 

if is(Input2, {!matrix})==1
error("Not a matrix!", "F", Input2)

endif

If the error criterion is met, the string Not a matrix! is written to the commands 
window message area. 

beep( )

beep( ) causes an audible beep; on UNIX, it also displays a popup.

beep "this is a test"
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6.3.4  Indexing Functions

This section is a brief overview of indexing functions that are useful in programs. 
For detailed descriptions of these functions, see the MATRIXX online Help.

index( )

index( ) finds the starting location of a substring within a string. If the substring is 
not found -1 is returned.

s="What is the meaning of this?";
i=index(s,"this")

i (a scalar) =   24

find( )

find( ) returns an index list of the elements in the matrix that meet the specified 
condition. An index list is a matrix containing the row and column locations (the 
indices) of all elements that meet the condition. 

a = [20,4,-14;30,-65,0;48,582,29]

a (a square matrix) =

  20      4    -14
  30    -65      0
  48    582     29

elements = find(abs(a)>25)

elements (an index list) =

  2    1
  2    2
  3    1
  3    2
  3    3
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6.4  Using the Xmath Debugger

The Xmath Debugger can be controlled interactively from the Debugger window 
(Figure 6-4), or from the Commands window command line. The command line 
debugger is the only available method for Windows users and anyone running 
the tty version. This section describes both interfaces.

Figure 6-4 Xmath Debugger Window in Debug Mode (UNIX)

Menu Bar
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Error 
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Line #
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Note that debug mode starts under three circumstances:

■ A call is made to a program that is set up for debugging.

■ A program contains a syntax error. A syntax error is an error in punctuation, 
for example, a missing brace:  plot(a,{xlab="A missing brace").

■ A program contains a runtime error. A runtime error occurs when an 
instruction is impossible to process. The following statement would cause a 
runtime error because the objects are incompatible: x=5 + "hello".

6.4.1  Debug

You can use the debug command to define and set break for a program. In the 
command window command area, type:

debug program_name

If you activate debug for a program, the debugger opens automatically on the first 
executable line in the script whenever you call the entity. While in debug mode 
you can step through your file and evaluate any expression or run any command. 
In addition, the NEXT and SET BREAK commands can be used to debug nested 
functions.

6.4.2  Debug Mode

In addition to the above cases (where you are intentionally debugging a specific 
MSF or MSC), a programming error also invokes the Debugger window in debug 
mode (see SET DEBUGONERROR). 

Entering Debug Mode

■ All windows say “(Debugging)” in the title area (at the top) when you are in 
debug mode. In the Debugger window, the full filename of the entity being 
debugged is displayed just below the menu bar.

In the command line debugger, the command prompt will change to: 
(program)Debug>.

■ If the Debugger window was opened because the file contains a syntax error, 
the Next button is enabled (see Figure 6-4). If there are multiple errors, the Next 
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Message and Previous Message button is also enabled. You can repair a syntax 
error, then continue to step through your file or look at the previous message.

Stepping Through a Script

■ In the command line debugger you can step forward, using the next 
command, or continue execution with the go command.

■ You can set and remove break points from the Debugger window or the 
command line (see 6.4.3 Setting, Showing, and Removing Breakpoints, p.268).

■ You can set and remove watch points from the Debugger window or the 
command line (see 6.4.4 Setting and Removing Watchpoints, p.269).

Exiting Debug Mode

■ To stop debugging from the Debugger window, click End Debug.

■ To stop debugging from the command line, type abort.

In the Debugger window, the word Debugging disappears from the title area of all 
windows. This mode is referred to as Edit mode. 

To close the window select File→Close Window. To stop debugging and close the 
debugger in one step, place the cursor over the Debugger window and type Ctrl-W 
(for workstations only). 

Editing a File in the Debugger Window

When the Debugger window is not in debug mode, it is acts as an editor. To fix 
your script, click into the Debugger window and make your change. If you modify 
the script via the Debugger window, the Save and Revert buttons become active, 
and you can no longer step through. Before saving, make sure that the script file is 
not open in any other editor.

The Debugger window provides the same simple editing capabilities available 
from the Xmath Commands window command area (1.6.3 Command Area, p.18). 
You can manually open the debugger by selecting Windows→Debugger. To edit a 
file, select File→Open. The file appears in the window. Once you make a change, 
the Save and Revert buttons are activated. 
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SET DEBUGONERROR

The environmental setting debugonerror determines the mode in which the 
debugger will appear. 

■ The default setting is On. If an error is detected in a program, Xmath opens 
the debugger and redirects focus to the Xmath Debugger window (see p.266). 

■ If debugonerror is set to On, and you have activated debugging for a program 
with debug program_name, the debugger opens in debug mode whenever the 
entity is called.

■ If debugonerror is set to Off, and you have activated debugging for a program 
with debug program_name, the debugger opens whenever the entity is called, 
but focus stays in the Commands window.

6.4.3  Setting, Showing, and Removing Breakpoints

A breakpoint causes the debugger to stop execution at a specific line number in 
the source, provided that set debugonerror on is in effect (the default). 

■ If you issue the command DEBUG NAME a break is automatically set on the 
first executable line of the script, causing the debugger to open whenever that 
script is called. 

■ You can set a breakpoint interactively in the Debugger window, or from the 
Commands window command area. 

● To set a breakpoint in the Debugger window, position the cursor in the line 
where you want to break execution, then press the Set Break button. Note 
that when you position the cursor in the Debugger window, the line 
number is shown below the filename on the upper left. 

or

● Go to the command area and type:

SET break lineNumber

■ To see a list of the breakpoints you have set, go to the command area in the 
Commands window and type:

NOTE:  In order to set a breakpoint interactively, the file in which you wish to set 
or remove breakpoints must currently be open in the Xmath debugger in debug 
mode.
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SHOW break

A list of breakpoints will appear in the format fileName:Line_Number. You 
will see breakpoint line numbers for all entities that have debugging enabled. 

■ Breakpoints can be removed via the Commands window with the REMOVE 
command. (Again, you must be viewing this script in debug mode.) Go to the 
command area and type:

REMOVE break lineNumber

As mentioned earlier, all scripts that have been called or explicitly defined 
automatically have a breakpoint set on the first executable line. Type SHOW 
debug to see the files you are debugging.

■ To run a file without stopping at its breakpoints, go to the command area and 
type:

DEBUG program_name off

Note, however, if the script contains an error, the debugger will open 
regardless.

6.4.4  Setting and Removing Watchpoints

A watchpoint causes the debugger to stop execution whenever a watched 
variable is modified. 

You can set a watchpoint interactively in the Debugger window, or from the 
Commands window command area. The script containing the variable you want to 
watch must currently be shown in the debug window in debug mode:

■ To set a watchpoint interactively, go to the Xmath Debugger and highlight the 
variable you want to watch, then press the Set Watch button.

■ To set a watchpoint with the set command, go to the commands window 
command area and type:

set watch varName

Now you can use the Commands window to display the values of variables that 
are local to the current MSF or MSC. 

To see a list of the variables you are watching, go to the Commands window 
command area (while in debug mode) and type:

show watch
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A listing appears in the format functionName:varName. 

Watchpoints can be removed via the Commands window with the remove 
command. The entity containing the watchpoints you want to remove must 
currently be shown in the debug window in debug mode. Go to the Command 
window command area and type:

remove watch varName

If you want a function to run without stopping at the watchpoints but you do not 
want to remove them, type 

debug program_name off

in the command area.

6.4.5  Debugger Window Interface

This section describes the Xmath Debugger ’s user interface.

Fields

The filename of the function being debugged is displayed just below the menu 
bar.

The top field in the window contains the source of the MSF or MSC that you are 
debugging. The line that is about to be executed is highlighted (unless there are 
errors in the function, in which case the highlighted line points to the error). The 
source field is read-only unless you have write privileges to the source file. The 
middle field is the message area. Status and error messages that occur while 
debugging are displayed here.

Menus

The enabled menus are the File menu and the Windows menu. The File menu 
allows you to edit another MSF or iconify the debugger. The Windows menu 
allows you to quickly find other Xmath windows and bring them to the 
foreground.
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Buttons

Next Message — Enabled when there are multiple errors. This button highlights 
the next line that contains an error (assuming you are not at the bottom of the 
list). 

Previous Message — Enabled when there are multiple errors. This button 
highlights the previous line that has an error (assuming you are not at the top 
of the list). 

Redisplay — Refreshes the window.

Edit On/Off — Toggles the source to be editable or read only. You may want to 
toggle edit off to prevent accidental edits.

Save — Enabled whenever you make changes to the source. Pressing this button 
saves your changes to the file.

Revert — Discard edit changes and load the last saved version of the file.

Next — Executes the next line of code.

Go — In debugging, causes the function to run until a break point is encountered, 
a watched variable is modified, or the end of the file is reached.

Rerun — Enabled after source changes have been saved. Press to rerun the 
function with previous inputs.

Set Break — Sets a breakpoint on the current line (where the cursor is in the source 
field). Xmath will pause function execution at any breakpoint(s) you set. To 
do this from the command area, see the MATRIXX online Help under set 
break.

Set Watch — Sets a watch on a variable. To watch a variable, use the pointer to 
highlight the variable name, then press this button.

End Debug — Exit debug mode; no arguments will be returned from the function.
271



MATRIXX 7.0
Xmath User’s Guide
6.5  Advanced Topics

This section includes the following topics:

■ Variable arguments

■ Executing a function at a specific directory

■ Partition and variable directory functions

■ MathScript command output and error capture

■ Programming for platform independence

6.5.1  Variable Arguments

When you use the colon (:) index operator in a MathScript entity declaration, the 
program handles a variable number of inputs, outputs, or keywords. The function 
argn( ) returns the number of a program’s arguments, while argv( ) extracts the 
value and name of the argument.

argn( )

argn( ) returns the number of inputs (the default), keywords, or outputs for a 
MathScript entity (see Example 6-5). To get the number of keywords, specify the 
keyword, keywords; to get the number of outputs, specify the keyword, outputs. 

Example 6-5 argn( )

function [args]=howmany(:)
   args=argn()
endfunction

Example 6-5 counts the number of inputs. For example, howmany(1,1,1,1) returns 
4.

argv( )

argv( ) allows you to index into the inputs, keywords, or outputs for a program. 
argv( ) can return the value and/or name of the argument; for argv( ) to return the 
name of the argument, however, it must be a keyword. To return the name of an 
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output, the calling statement must use output keywords (see Output Keywords on 
p.248).

Using argn and argv

Example 6-6 uses the argn( ) to determine the number of inputs and loop over 
them accordingly. argv( ) gets the value of each argument, and then the length is 
determined for the output.

Example 6-6 argv( ) combined with argn( )

function out=howlong(:)
n=argn();
for i=1:n
  in=argv(i)
  out(i)=length(in);
endfor
endfunction

x=howlong(rand(2,3),1:7,pdm(ones(4,5),{rows=2}))?

x (a column vector) =

   6
   7
  10

Example 6-7 accepts any number of scalars; it displays a message when the 
keyword reply is specified but not otherwise. 

Example 6-7 msg.msf

function [out]=msg(:,{reply})

ni=argn()
nk=argn({keywords});
[v,n]=argv(ni);
ni=ni-nk;
if n=="reply"
  key=1;
else
  key=0;
endif

for i=1:ni
  if is(argv(i),{!scalar})
     error("Scalars Only!", "C");
  else
     out(i)=argv(i);
  endif
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  if key==0  & i==ni
    out;
  endif
  if key==1 & ni==1
    display "Thanks for the scalar!" ;
  elseif  key==1 & i==ni
    display "Thanks for the " + string(ni) + " scalars!" ;
  endif
endfor

endfunction

msg(1,1000,pi,{reply})

Thanks for the 3 scalars!    

ans (a column vector) =

     1      
  1000      
     3.14159

msg(5,5,9)

ans (a column vector) =

  5
  5
  9

Example 6-8 provides the function varargs( ), which has a variable number of 
outputs, inputs, and keywords. In the following call:

[out1=fop1,out2=fop2]=varargs(1,2,3,{k=9})

Note that we define two outputs (fop1, fop2), three inputs, and one keyword (k). 

Within the function, argn( ) is used to determine the number of arguments, and 
argv( ) is used to determine the name of the arguments. Note the use of the 
[value,name]=argv(i,{keywords}) syntax for inputs and keywords and the 
name=argv(i,{outputs}) syntax for outputs. Note also that the function itself does 
not assign a value to the outputs.

The output of the above call appears in Example 6-9. The names of the keyword 
and the outputs appear in the output stream; the names of other input arguments 
are NULL.

Example 6-8 varargs.msf Using argn and argv

function [:] = varargs(:,{:})
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for i=1:argn({keywords})
[v,n] = argv(i,{keywords})?            # display value and name of
end                                    # keyword inputs
display “-----------------------------------------------------”n”

for i=1:argn({!keywords})
[v,n] = argv(i,{!keywords})?           # display value and name
end                                    # of non-keyword inputs
display “-----------------------------------------------------”n”

for i=1:argn()
[v,n] = argv(i)?                       # display value and name 
end                                    # of all inputs
display “-----------------------------------------------------”n”

for i=1:argn({outputs})
n = argv(i,{outputs})?                 # display name of all outputs
end

endfunction

Example 6-9 Output of varargs.msf

v (a scalar) =   9
n (a string) =   k    
------------------------------------------------------    
v (a scalar) =   1
n is null
v (a scalar) =   2
n is null
v (a scalar) =   3
n is null
------------------------------------------------------    
v (a scalar) =   1
n is null

v (a scalar) =   2
n is null
v (a scalar) =   3
n is null
v (a scalar) =   9
n (a string) =   k
------------------------------------------------------    
n (a string) =   fop1    
n (a string) =   fop2    

To assign values to the outputs fop1 and fop2, the function needs an assignment 
statement(s), which must be a text string. For example, the following loop assigns 
the outputs with the values 1 and 2, respectively:

for i=1:argn({outputs})

      n = argv(i,{outputs})
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      execute n + "=" + string(i) + ";"; # assign i to the i'th output

endfor

6.5.2  Executing a Function at a Specific Directory

The function assignment syntax used in calling an LNX in background mode 
allows a directory to locate the function to be specified with a keyword. For 
example:

[out] = (define myfunc, {directory="mydir"})(1,2,3)

where Xmath calls the MSF or LNX function myfunc( ) in the directory mydir, 
leaving an existing definition of myfunc( ) unchanged.

6.5.3  Partition and Variable Directory Functions

The function directory( ) allows directory listings of Xmath partitions and 
variables to be captured as vectors of string names. The directory( ) function 
requires one input, a string containing a wildcard as used in the command WHO, 
and produces one output, a vector of names of partitions and variables as 
produced by the command WHO using the specified wildcard. The names are 
always full names, and the partition name is always prefixed. The syntax is 
shown in the following example:

out = directory("main.*")

where the variable out will contain a vector of strings of the variable names found 
in main (for example, main.a, main.b, etc.).

6.5.4  MathScript Command Output and Error Capture

The following syntax allows the textual output and error messages of a 
MathScript command to be captured in MathScript variables as string values:

[outputs = format, errors] === statement

or

[outputs, errors] === statement
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where outputs and errors are MathScript variable names and statement can be any 
valid MathScript statement. The format keyword formats the output in a 
command-dependent way; see the examples below for details.

If the outputs variable is specified, the textual (nongraphical) outputs of 
statement, if any, are inserted into the outputs variable instead of displaying in the 
Xmath log area of the Commands window. If the outputs variable is omitted, the 
output of statement is displayed normally.

If the errors variable is specified, Xmath will suppress normal processing (error 
location highlighting, bringing up the Debugger window, and stopping command 
execution) of any errors generated by statement. Instead, the error messages are 
converted to text and inserted into the errors variables. If errors is omitted, Xmath 
performs normal error processing of errors generated by statement.

This error capture feature allows a program to perform error handling of 
commands that may fail as shown in the following Examples section.

Examples

In the following example of error handling, if the variable name contained in the 
string varname is a legal Xmath variable name, err would be a null; otherwise, err 
would contain an error string. For example:

varname = getline("Please enter an Xmath variable name:");
[,err]===execute varname + "=1;"

In the following example of error handling, any error calling myfunc is converted 
into an error message and inserted into err as a text string:

[,err] === myfunc(123)

In a similar example, the variable out captures the output of the Windows dir 
command in a string:

[out] === oscmd("dir")

In the following example, out contains a formatted version of the captured 
output:

[out=format] === statement

Currently, the WHO and SHOW PARTITIONS commands support this 
formatting. The directory( ) function described in 6.5.3 Partition and Variable 
Directory Functions, p.276 uses both these commands. For example,
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DIRECTORY("main.*") 

actually executes this statement:

[out=format] === who main.*

The captured output is a vector of strings containing the names of the variables in 
the partition main.

When [out=format] is used with other statements that don’t support formatting, 
the captured output will be a vector of strings, each of which contains a line of 
output. By default, the length of the row vector out is the number of strings (and 
therefore the number of lines in the captured output). You can transpose out to see 
the output strings as they are normally displayed in the Xmath log area.

[out=format] === rand(2,2)
size(out)
out'?

6.5.5  Programming for Platform Independence

While MathScript is portable across UNIX and Windows platforms, calls to the 
operating system are platform-dependent. For example:

oscmd("ls *.xmd") # UNIX
oscmd("dir *.xmd")  # Windows

With the MathScript function platform( ), you can program a command so that it 
can be run on either platform. For example:

if platform() == "UNIX"
   oscmd("ls *.xmd")  # UNIX
else
   oscmd("dir *.xmd") # Windows
endif

Another problem area with cross-platform programming is the directory path 
name syntax difference. The get({path}) function is useful in reconciling these 
differences. The COPYFILE command, for example, makes use of the get({path}) 
function to provide a platform-independent way of copying files. For more 
information, see the MATRIXX online Help.

NOTE:  This syntax cannot be nested.
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This chapter outlines the procedure for writing and using your own MathScript 
object (MSO). Before writing an MSO you should have a good understanding of 
object-oriented concepts and Xmath objects in particular. Chapter 5, Data Objects 
and Operators, introduces each intrinsic Xmath object and the operators that are 
overloaded for that object. You should also be proficient in the MathScript 
language (Chapter 3 and Chapter 6).

As described in Chapter 5, you can easily augment these intrinsic objects by 
designing your own custom objects using MathScript.

7.1  MSO Overview

The MathScript object feature enables you to create custom high-level objects for 
use in the Xmath environment. Object development in Xmath fundamentally 
involves determining what data defines the instance of an object, writing the 
initializer function and creating the various commands, functions, and operators 
which can manipulate object instances. The complete definition of an object and 
its behavior is encapsulated within an MSO file. The structure and contents of an 
MSO file are described in greater depth in subsequent sections.

Careful thought should be used when developing objects, especially those which 
will be shared among a number of people. The object author should design, test, 
and document objects before allowing others to use them. Once an MSO is in use, 
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any changes to the definition of the class variables will create inconsistencies 
between current and future instances that may be difficult to identify.

7.1.1  Object Instantiation

Once an object is defined by creating an MSO file, object instances can be created 
from the Xmath command line or within any script using the following syntax:    

instance = myobject(parameters);

This statement executes the object’s initializer function with the supplied input 
parameter(s). The output of this expression is an object instance. An object 
instance is recognized as an Xmath variable; this implies that it can be operated on 
by Xmath commands such as SAVE, LOAD, and DELETE, copied with the 
assignment operation, passed as a parameter to a function or command, and 
returned as a function output.

The object instance is a container that stores the persistent class variables that 
characterize a particular instance. The syntax for accessing a class variable is the 
same as the syntax for addressing a variable in another partition. For example, if 
an object named myobject contains a class variable named sigma, then that 
variable can be accessed with the following statement:

instance.sigma

7.1.2  MSO File Format

MSO file format structure adheres to the rules in Sections 6.1.3 and 6.1.4 on p.226, 
with one exception. The MSO file format accommodates multiple constructs in a 
single file. This enables you to use a single file to define the object, overload or 
create pertinent functions and commands, and overload operators to support the 
new object. Example 7-1 illustrates the structure of an MSO file.

Example 7-1 Sample MSO File Format

#{
Block comment used as Help for this object.
}#

Object[x1,...] = mymso(in1,..., {kwds})
... MathScript statements

endObject
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Operator z1 = +(<type>left,<type>right)
... MathScript statements

endOperator

Function[y1,...] = memFun(<type>a,..., {kwds})
... MathScript statements

endFunction

Command memCmd <type>input {kwds}
... MathScript statements 

endCommand

■ If MATRIXX online Help is desired, supply a Help file or begin the file with 
commented text that will serve as the Help text.

■ The body of the file consists of programming constructs. The first construct in 
the file must be the initializer function for the object. The initializer function 
contains the MathScript statements which are executed by Xmath whenever a 
new instance of this object is created. The initializer function is explained in 
greater detail in 7.2 Initializer Function, p.282.

■ Optional constructs to define or overload MathScript functions and 
commands that act on your object can follow the initializer function in any 
order, as discussed in detail in 7.4 Member Functions, p.289.

■ Optional constructs to overload operators can also appear anywhere after the 
initializer function, as discussed in detail in 7.3 Operator Overloading, p.285.

7.1.3  Using MSOs in Xmath

The process for defining an MSO is identical to that for other MathScript entities 
(see 6.1.7 Using User-Defined MSFs and MSCs, p.230). Just include the MSO files 
you need in your Xmath path. Alternatively, you can define them explicitly with 
the DEFINE command:

define mymso,{directory="/myHome/myobjects/my_mso"}

Xmath dynamically loads an MSO definition into memory only when it is 
necessary. 

NOTE:  You provide online Help for MSOs the same way as for MSFs and MSCs; 
see 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.229 for more 
details.
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7.2  Initializer Function

The initializer function is a special function that is executed to create a new 
instance of an object. It is the only required component in an MSO, and it must be 
the first construct in the MSO file following the optional Help text. The syntax for 
an initializer is the same as MathScript functions, except that the initializer is 
declared between the statements Object and endObject. All other rules in Sections 
6.1.3 and 6.1.4 on p.226 apply.

A simple initializer function is shown below.

Object[y]=mymso(a1,{b1})
... MathScript code

endObject

7.2.1  Class Variables 

An object instance is characterized by persistent variables that are stored within 
the object instance, similar to the way variables are stored within a partition. The 
initializer is responsible for creating an instance and storing the class variables 
within the instance. After object instances have been created, any other constructs 
defined in the MSO file can access the class variables.

There are three types of class variables: required, optional, and computed. 
Examine the following code fragment:

Object[y1]=mymso(a1,{b1})
... MathScript code

endObject

■ Required variables, such as a1 in the example above, must be specified by the 
user when the object instance is created.

■ Optional variables, like b1, are optional input arguments to the initializer.

■ Computed variables, such as y1, are calculated by the initializer, typically as a 
function of the input arguments.

Any number of required, optional, or computed class variables may be defined 
for an object. The DEFAULT command is sometimes useful to give optional and 
computed variables a default value.

When the initializer completes execution, a class variable that exists within the 
function scope will be stored within the object instance. The MathScript 
statements within the initializer can modify or delete any class variable. As a 
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result, required, optional, or computed arguments may or may not exist within an 
object instance, depending on statements in the initializer. 

Variables created in the body of the initializer that are not class variables are 
considered temporary and are automatically deleted when the initializer 
completes execution. If you want a variable to be persistent, specify it as a 
computed variable.

When an object initializer is called, the result of that statement is always a single 
instance of the new object. The defined outputs, such as y1 in the above initializer 
function, are used to create a computed class variable (as opposed to the output of 
an ordinary function). 

The following is a sample initializer function for the new object mysys. Note that 
this object does not have any computed variables. They are not required.

Object mysys(a,b,c,d, {dt})
... MathScript code

endObject

You would create an instance of mysys as follows:

inst= mysys(1,2,3,4);

After the input variables are created within the object and given their appropriate 
values, the initializer is called in the scope of the inst object. The initializer checks 
the arguments for correctness, sets any optional arguments that require a default 
value, and then calculates the output arguments based on the inputs. When the 
initializer is complete, all local variables are deleted from the object.

7.2.2  Nested Objects

Any class variable can be an instance of another object. As a result, you can create 
quite complex nested object hierarchies. If a required or optional class variable is 
an object, the user must create an instance of the nested object and supply it as an 
input to the initializer. If a computed class variable is an object, the initializer itself 
will create the instance of the nested object.

Let’s say you had the following nested object embedded within two other objects.

Object nested(z)
... MathScript code

endObject

Object supplied(<nested> x)
... MathScript code

endObject
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Object [x] = computed(y)
x=nested(y)
delete y

endObject

To create an instance of the object supplied, the user would type the following:

a = nested(1);
b = supplied(a);

However, to create an instance of the object computed, the user only types the 
following:

c = computed(1);

7.2.3  Type Declaration

Type declarations are qualifiers that can optionally precede each input argument 
for functions, commands, and operators defined in an MSO. They create a 
restriction that an argument must be an instance of a particular type of object.

The syntax of a type declaration is to specify the name of an MSO within a set of 
angle brackets immediately before any input argument. 

Object[x]= mymso(in1,<alien>in2)
... MathScript 

endObject

In the initializer function shown above, the type declaration <alien> specifies that 
any instance of an object of type alien will be accepted as the second argument.

Arguments that do not have a type declaration indicate that any object will be 
accepted when this function, command, or operator is called.

The Xmath interpreter uses type declarations for two purposes:

■ Ensure that parameters passed to user-defined functions and commands are 
the correct type. If a mismatch is encountered, Xmath will automatically 
generate an error message.

■ Facilitate function, command, and operator overloading by limiting the use of 
certain constructs to a specific combination of input arguments. The use of 
type declarations to achieve overloading is described in detail in a later 
section.
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7.3  Operator Overloading

The ability to customize the behavior of operators in Xmath to manipulate MSOs 
is called operator overloading. Operator definitions containing MathScript 
statements that should be executed to achieve the desired behavior are placed 
within an MSO file. The syntax of an operator definition is similar to that of a 
function definition, with the exception that the operator behavior is declared 
between the Operator and endOperator statements. For example, to define the 
plus (+) operator to add two apple objects together, you would insert the 
following construct in apple.mso.

Operator y = + ( <apple>left, <apple>right)
... MathScript code 

endOperator

Multiple operator definitions may be required for the same operator to 
completely define all possible object combinations. For example, if you have an 
apple.mso and an orange.mso, you would need the following three operator 
definitions in addition to the one above to describe all possible combinations of 
adding apples and oranges.

Operator y = + ( <apple>left, <orange>right ) 
... MathScript code 

endOperator

Operator y = + ( <orange>left, <apple>right ) 
... MathScript code 

endOperator

Operator y = + ( <orange>left, <orange>right ) 
... MathScript code 

endOperator

Operator definitions can be inserted in any of the MSO files that are declared as 
arguments. So the two operators that combine apples and oranges can appear in 
either the apple.mso or the orange.mso. However, because Xmath searches MSO 
files from the left argument to the right argument, it is more efficient to put the 
operator definition in the MSO file corresponding to the first argument.

Type declarations, like <apple>, tell the Xmath interpreter which operator 
definition to choose from when performing operations that deal with objects. For 
unary and binary operator definitions, at least one of the arguments must have a 
type declaration for the MSO in which the operator definition resides.

Type declarations are not required on all arguments. If a type declaration is not 
specified, Xmath will accept any variable for that argument. For example, the 
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following operator will add an apple object to any type of object including 
intrinsic Xmath objects such as matrices, strings, etc.

Operator y = + ( <apple>left, right ) 
... MathScript code 

endOperator

The MathScript code within such an operator should check unqualified 
arguments and restrict inputs to the object types that the MathScript code can 
properly handle; an error should be returned if the conditions are not met.

Operators that can be overloaded are listed in Table 5-1, p.172.

Unary operators act on a single variable and their operator definitions will have 
only one input argument. Binary operators act on two variables and their 
definitions will have two input arguments. The - operator is both a unary and 
binary operator and Xmath will automatically select the correct definition from an 
MSO file based on the number of declared arguments.

Operator y = - ( <apple> arg) 
... MathScript code 

endOperator

Operator y = - ( <apple>left, <apple>right ) 
... MathScript code 

endOperator

The comma and semicolon operators are special operators that can accept two or 
more operands. For example the following operator definitions describe two 
combinations of different types of objects manipulated by the comma operator.

Operator y = , ( <obj1>one, <obj2>two ) 
... MathScript code 

endOperator

Operator y = , ( <obj1>one, <obj2>two, <obj3>three ) 
... MathScript code 

endOperator

The comma operator definitions above would correspond to the following two 
types of expressions, assuming a, b, and c are of the appropriate type:

case1 = [a,b]; 
case1 = [a,b,c];

The comma and semicolon operators can also be used in compound expressions. 
In the following example, a and b would first be resolved using the appropriate 
comma operator to produce an intermediate result, then, c and d would be 
resolved with the appropriate comma operator to produce a second intermediate 
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result. Finally, the two intermediate results would be resolved with the 
appropriate semicolon operator.

result = [a, b; c, d];

When the comma or semicolon operators act on an operand of heterogeneous 
types, a separate operator definition is required for each specific combination of 
operands, as was illustrated in the above examples. However, the variable 
argument construct (:) can be used when all operands are of the same type (see 
6.5.1 Variable Arguments, p.252). The variable argument construct also has the 
advantage that a single operator definition can generically handle any number of 
operands. The following definition of the comma operator illustrates the variable 
argument syntax:

Operator y = , ( <special>: ) 
n = argn(); 
for i = 1:n 
  x = argv(i); 
  y = ... 
endfor 

endOperator

The colon argument (:) instructs Xmath that any number of operands will be 
accepted by this definition, all of which must be of type special. The argn( ) 
function, which requires no inputs, will return the number of operands. The 
argv(i) function accepts an integer between 1 and the number of operands and 
will return a copy of the requested operand. Consequently the variable argument 
operator definitions can be generically programmed with loops to handle any 
number of homogeneous operands. 

The insertion and extraction index operators are also special operators. The 
insertion index operator enables indexing into an object instance on the left side of 
the equal sign in an expression. In the following example, inst is an instance of an 
MSO called myObj, and the following expression attempts to insert 10 into the 
second element of the inst object.

inst = myObj(a); 
inst(2) = 10;

The extraction index operator enables indexing into an object instance on the right 
side of the equal sign in an expression. For example, the following expression 
attempts to extract the value from the fifth element of the inst object.

ans = inst(5);

The definition of the insertion and extraction index operators would have the 
following structure and would reside in the myobj.mso file. 
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Operator Object(i) = y 
... Mathscript code 

endOperator
Operator y = Object(i) 
... Mathscript code 
endOperator

The argument i would contain the element indices 2 and 5 from the above 
examples at runtime. The argument y would contain the value to be inserted or 
the result to be extracted to or from the object. The MathScript code within the 
index operator should check and restrict the input arguments (i and y) to only 
object types with values that the MathScript code can properly handle; an error 
should be returned if the conditions are not met.

The word Object in the above declarations is a reserved token which instructs 
Xmath that this is a special operator that will execute directly within the scope of 
the object instance. In other words, the MathScript code within these operators 
can directly access the class variables within the instance. For example, let’s say 
the variable x is a class variable of myObj. The MathScript code within a binary 
plus (+) operator would have to reference x with the statement left.x or right.x, but 
the index operator can reference x directly with the statement x. Take care that the 
declared arguments of the operator (y and i) do not overwrite the class variables 
of the object.

The index operators can accept any number of operands, as long as an operator 
definition with the appropriate number of arguments resides in the object’s MSO 
file. To also handle two-dimensional indexing for the myObj example object, the 
following two operators, each with two index arguments, i and j, would be 
required.

Operator Object(i,j) = y 
... Mathscript code 
endOperator

Operator y = Object(i,j) 
... Mathscript code 

endOperator

The index operators also support the variable argument construct to handle any 
number of operands generically. The following extraction index operator 
illustrates the variable argument syntax for the index operator. 

Operator y = Object(:) 
n = argn(); 
for i = 1:n 

x = argv(i); 
y = ... 

end 
endOperator
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7.4  Member Functions

Your MSO should include any functions or commands that use your object.

■ Member functions and commands behave like MSFs and MSCs with the 
exceptions that they cannot be debugged individually unless they are 
uniquely named. 

Once your MSO is defined, MSO member entities can be called from the Xmath 
command area, or other MathScript files.

■ You can overload existing commands and functions to operate on your object. 
For example, the following function overloads the function max( ) to 
accommodate the MSO type group.

function [out]=max(<group>a)
   out=max(a.data)
endfunction

When a function or command is overloaded, its behavior is limited to the 
cases specified in the function header. For example, the overloaded version of 
max will only be enabled if the input is a group object.

■ The file need not contain all the code for each new function or command. 
Using LNXs for complex numerical operations will speed up execution 
considerably. 

■ You can identify member functions with the whatis command. For example:

whatis other

other is a member function (./other.mso)

■ Member function and command definitions do not include Help text; their 
Help text should be included with the Help text for the MSO.

7.4.1  Sample MSO

The MSO shown in Example 7-2 defines an object named group. This MSO will 
accept any single row matrix. This MSO overloads the min( ) and max( ) functions 
to support this object. It also overloads binary and unary minus (-), *, +, and 
binary and unary equality. You can find this example in $XMATH/examples/mso/
group.mso.
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Example 7-2 group.mso

#{--------------------------------------------------------------
The group object is an unordered collection of unique whole numbers which can 
be manipulated by operators that adhere to conventional set theory. We are 
using the name "group" for this object so it does not conflict with the "set" 
command in Xmath.

A new group is defined using the group initializer. For example:

      s1 = group( [1,2,3,4] );
      s2 = group( [3,4,5,6] );

Binary group operators are defined as follows:

      A + B = union of A and B
      A - B = difference, the elements of A 
              which are not in B
      A * B = intersection of groups A and B

   Unary group operators are defined as follows:

       - A  = inverse of all the elements of A
--------------------------------------------------------------}#

Object group( data )
   if( !check(data,{rows=1,!report}))
      error("Parameter 'data' must be a single row matrix","F")
      return
   endif

   data = sort(data); // check for duplicate elements      
   [,n] = size(data);
   for i = 1:n-1
      if data(i) == data(i+1)
         error("Non-unique element","F",data);
      endif
   endfor
endObject

#------------------------------------------------
# Overload of max
#------------------------------------------------
function [out]=max(<group> a)
   out=max(a.data)
endfunction

#------------------------------------------------
# Overload of min
#------------------------------------------------
function [out]=min(<group> a)
   out=min(a.data)
endfunction

#------------------------------------------------
# Unary Minus
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#------------------------------------------------
Operator y = - (<group> a)
   y = group(-a.data);
endOperator

#------------------------------------------------
# Difference
#------------------------------------------------
operator y = -(<group> a, <group> b)
   [,cols]=size(a.data)
   y = null;
   temp = null;
   for i = 1:cols
     loc = find(a.data(i) == b.data )
     if( loc == null )
       temp = [temp,a.data(i)];
     endif
   endfor
   if (temp <> null)
      y = group(temp);
   endif
endoperator

#------------------------------------------------
# Intersection
#------------------------------------------------
operator y = * (<group> a, <group> b)
   [,cols]=size(a.data)
   y = null;
   temp = null;
   for i = 1:cols
     loc = find(a.data(i) == b.data )
     if( loc <> null )
       temp = [temp,a.data(i)];
     endif
   endfor
   if (temp <> null)
      y = group(temp);
   endif
endoperator

#------------------------------------------------
# Union
#------------------------------------------------
operator y = + (<group> a, <group> b)
   c = b - a;
   y = group( [a.data,c.data] );
endoperator

#------------------------------------------------
# Equality
#------------------------------------------------
operator y = == (<group> a, <group> b)
   y = 0
   [,acols]=size(a.data)
   [,bcols]=size(b.data)
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   if( acols <> bcols )
     return
   endif
   res = a.data==b.data
   if( check(res,{nonzero,!report}) )
     y = 1
   endif
endoperator

#---------------------------------------------------------------
# Index Operators
#---------------------------------------------------------------
Operator Object(i) = y
   [r,c]=size(y);
   if (r <> 1 & c <> 1)
         error("Invalid insertion data","F",y);
   endif
   data(i) = y;
endOperator

Operator [y] = Object(i)
   y = data(i);
endOperator

#---------------------------------------------------------------

7.4.2  Limitations

■ Member entities and operators cannot have their own online Help.

■ You cannot explicitly define or debug a member function, command, or 
operator, only the object initializer. Consequently, if you alter the definition of 
a member entity, you must UNDEFINE it before the new definition can be 
used.

■ A MathScript object cannot be passed into an LNX, but the class variables 
from a given instance can be passed into an LNX as other variables are.

■ You cannot assign or access a variable using an expression that contains more 
than one dot. This implies that if an object instance contains another MSO as a 
class variable, you cannot directly access the class variables of the nested 
object. For example, the following syntax is not allowed:

x = obj1.obj2.var;

This limitation can be circumvented if you use a temporary variable:

temp = obj1.obj2; 
x = temp.var
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This chapter describes the three Xmath interfaces for user programs written in C, 
C++, or FORTRAN:

■ The User-Callable Interface (UCI) mechanism allows a user program to call 
Xmath as a server. 

■ The LNX (LiNked eXecutable) mechanism allows a subroutine in a user 
program to be callable by Xmath as if it were a regular MathScript function. 

■ Any C or C++ program can call the functions XmathSave( ) and XmathLoad( ) 
to save and load Xmath data files.

8.1  Overview

A user program using the LNX or UCI mechanism is termed an LNX or UCI 
program, or simply an LNX or UCI. Table 8-1 summarizes the differences between 
an LNX and a UCI.

Table 8-1 LNX and UCI Comparison 

Feature Comparison

Purpose A UCI starts Xmath; an LNX is started by Xmath.

Data Structure Both use the same data structure, the externType.
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Xmath also provides two functions, XmathSave( ) and XmathLoad( ), which allow 
an external program to save and load Xmath data.

The Xmath directory $XMATH/src contains code examples for the LNX and UCI 
utilities, as well as a sample makefile. $XMATH/include has include files for LNX 
and UCI scripts. 

8.1.1  LNX

The LNX utility allows you to invoke C, C++, or FORTRAN subroutines from 
within Xmath. Once an LNX is built, it can be used in the same manner as any 
MathScript function. Furthermore, an LNX can be invoked in background mode 
so that it can run in parallel with Xmath.

Sample LNX Program

An LNX written in C program has the layout shown in Figure 8-1. Each LNX 
program contains one LNX function. The LNX function performs a specified 
calculation and has the following format:

void LNXfunc(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs; 
externType **lhs, **rhs; 
{
  ...
} 

Functions UCI: Must use XmathStart( ) and XmathStop( ); must not use 
XmathMain( ).

LNX: Must use XmathMain( ); must not use XmathStart( ) or 
XmathStop( ).

Build Both must include a C header file called xmathlib.h and link with a 
library called libXmath.a (for UNIX) and xmath.lib (for Windows).

Running UCI: Start Xmath with -call (a switch that triggers the UCI), the 
program that is calling Xmath, and any other desired startup 
options..

LNX: An LNX can be called just like any other MathScript function.

Table 8-1 LNX and UCI Comparison  (Continued)
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The input arguments reside in an array of externType pointers to which the 
variable rhs (right-hand side) points. The integer nrhs (number of right-hand side 
arguments) defines how many externType pointers are in the array.

An LNX function writes its outputs to lhs, which is an array of nlhs pointers 
allocated by Xmath. For example, if nlhs=3 (indicating that your LNX was called 

Figure 8-1 Typical C Language LNX Program Format

#include "xmathlib.h"

void LNXfunc(nlhs,lhs,nrhs,rhs)
int nlhs, nrhs;
externType **lhs, **rhs;

{
/* test for errors in input data */

if (condition){ /*input data errors*/
XmathError(ERROR_FATAL, "error msg",1);
return;
}

/* code */
}

static functionData fdata[]={

{"myLNX",LNXfunc,

1,3,1,3,

"myLNX takes the first input ..."},

{0}

};

main(argc,argv)
int argc;
char** argv;
{

   ...
XmathMain(argc,argv,fdata,0);

  ...
return 0;

} 

externType is a data structure defined in 
xmathlib.h. The variables nlhs and nrhs specify 
the number of left-hand side and right-hand side 
arguments (inputs and outputs). Each element in 
the lhs array holds an output variable pointer; 
each element in the rhs array holds an input 
variable pointer.

Required header file 

Main program must call XmathMain

Table of function data

Main program

Argument number in error 

Residency flag (0 or 1)

Minimum # of inputs, 

minimum # of outputs, 

Severity is defined in xmathlib.h

Help text

Return 0 is mandatory

maximum # of inputs,

maximum # of outputs

Error message

LNX function pointer
the name of the LNX
(currently unused)
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with three outputs), you might allocate a matrix for the first input, a PDM for the 
second, and a string for the third:

8.1.2  UCI Programs

The User Callable Interface (UCI) lets an external C program invoke Xmath as a 
child process, send and receive data to and from Xmath as shown in Figure 8-2, 
and execute MathScript statements. A UCI has the layout shown in Figure 8-3. 

matrix PDM string

lhs[0] lhs[1] lhs[2]lhs

Figure 8-2 Calling Xmath from an External Program (UCI)

Figure 8-3 Typical C Language UCI Program Format

MathScript Value externType

Xmath Process LNX Process

Inputs

Outputs

#include "xmathlib.h"

main(argc,argv)
int argc;
char** argv;
{
   ...

XmathStart(""); /* Starts Xmath */
  /* Calls to XmathGet, XmathPut, 

XmathExecute, etc....*/
XmathStop("");  /* Stops Xmath */
return 0;

} 

Required header file 

Main program
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8.1.3  Compatibility

If an existing LNX or UCI compiled for an older version of MATRIXX is intended 
to be run in a new version of MATRIXX, we recommend that you rebuild the LNX 
or UCI using the new version of MATRIXX to maintain currency with the new 
compiler, DLLs, and OS supported by the new version of MATRIXX.

Sometimes the IPC protocol in the Xmath LNX or UCI library changes due to bug 
fixes and enhancements. An existing LNX or UCI must be rebuilt using the new 
version of the MATRIXX LNX or UCI library (libXmath.a/xmath.lib). If you 
attempt to run a previous version of an LNX or UCI, Xmath displays the 
following message:

Process failed to load (incompatible ipc version).

8.2  externType Data Types

The file $XMATH/include/xmathlib.h contains the data structures for externType 
data types and related function declarations. This file must be included in all LNX 
and UCI programs and programs that call XmathSave( ) (see p.311) and 
XmathLoad( ) (see p.312).

An externType is an external version of an Xmath data value such as matrix, 
string, and PDM. These are detailed in the following subsections.

If you allocate memory for the externType data type with an Allocate*( ) function, 
you need to remember to deallocate the memory with the corresponding 
Delete*( ) function, especially before re-using the variable. The function tables in 
this section provide the names of these functions for each data type.

8.2.1  Matrix Data Type

The externType et_matrix corresponds to a MathScript scalar matrix value.

typedef struct {
   externType et;
   int rows, columns, isReal;
   double *real, *imag;
} et_matrix;
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The Boolean member isReal indicates whether the matrix is complex (isReal = 0) 
or real (isReal = 1).

Table 8-2 lists the functions provided in the LNX functions used to allocate a new 
matrix, convert arrays to the matrix structure, and delete existing matrices.

8.2.2  String Data Type

The externType et_string corresponds to the MathScript string value. 

typedef struct {
   externType et;
   int len, rows, columns;
   char *buf;
   char **array;
} et_string;

■ array is an array of char* with dimensions defined by rows and columns.

■ buf points to the string in the first row, first column of array. The integer len 
defines the length of this string. len does not have any significance for any of 
the other strings in array.

For a summary of the et_string type functions, see Table 8-3.

Table 8-2 et_matrix Functions 

Function Description and Prototype

AllocateMatrix( ) Allocates a matrix:

et_matrix* AllocateMatrix(int rows,int columns,int 
isReal);

WrapMatrix( ) Converts single or double arrays into a real or complex 
matrix.

et_matrix* WrapMatrix(int rows,int columns double* 
real,double* imag);

Both input arrays must be previously allocated and of type 
double. If the matrix is real, use the NULL pointer 0 as the 
imag argument.

This function does not copy the input data; therefore, do not 
delete the original arrays after calling WrapMatrix( ).

DeleteMatrix( ) Deallocates storage associated with the et_matrix input 
argument.

void DeleteMatrix, (et_matrix* the_matrix)
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8.2.3  PDM Data Type

The PDM data structure et_pdm is defined as shown below:

typedef struct {
externType  et;
et_matrix   *iv;
et_string   *name;
et_string   *columnNames;
et_string   *rowNames;
et_matrix   *theData;
int rows, columns;

} et_pdm;

The meaning of each member is described in the following PDM:

testpdm=pdm([1:3; 4:6; 7:9; 10:12],101:1:104,{rowNames = "leaves", 
columnNames =["birch", "elm", "oak"], domainName = "time"}):

Table 8-3 et_string Type Functions 

Function Description and Prototype

AllocateStringMatrix( ) Creates an et_string structure that can hold strings up to 
length len.

et_string* AllocateStringMatrix(int rows,int 
columns,int len))

The length of the string does not include the termination 
character.

WrapString( ) Converts a previously defined string to the et_string data 
type:

et_string* WrapString(char *buffer);

WrapStringMatrix( ) Converts a previously allocated array of strings to a string 
matrix object (LNX string data type).

et_string* WrapStringMatrix(int rows,int 
columns,char** buffer))

Wrapping functions WrapStringMatrix( ) and 
WrapString( ) do not perform any copying of strings; 
therefore, do not delete the original input strings after calling 
a wrap function.

DeleteString( ) Deallocates storage associated with the structure et_string.

void DeleteString, (et_string* the_string)
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Figure 8-4 shows the PDM testpdm and the et_pdm struct mapped to its parts.

Figure 8-5 shows how the information from testpdm is assigned to the fields of the 
et_pdm structure. Use AllocateMatrix( ) and AllocateStringMatrix( ) to build the 
PDM components, and WrapPDM( ) to form the PDM. For a summary of these 
functions, see Table 8-4.

Figure 8-4 Mapping the et_pdm Structure to a PDM

typedef struct {
externType  et;
et_matrix   *iv;
et_string   *name;
et_string   *columnNames;
et_string   *rowNames;
et_matrix   *theData;
int rows, columns;

} et_pdm;

testpdm (a pdm) =

time |         birch  elm  oak
-----+------------------------
 101 | leaves   1      2    3 
-----+------------------------
 102 | leaves   4      5    6 
-----+------------------------
 103 | leaves   7      8    9 
-----+------------------------
 104 | leaves  10     11   12 
-----+------------------------
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Figure 8-5 et_pdm Data Structure

et_pdm→et=etpdm

et_pdm→rows=1

et_pdm→columnNames rows=1
columns=3
len=5 (length of birch)

array=["birch","elm","oak"]

(et_string struct)

et_pdm→iv
real=101,102,103,104
rows=1
columns=4

et_pdm→theData
(et_matrix struct)

rows=4
columns=3
isReal=1
real=1:12
imag=NULL

(et_matrix struct)

et_pdm→rowNames
(et_string struct)

array= leaves
rows=1
columns=3
len=5

et_pdm→columns=3 

et_pdm→name
(et_string struct) len=4

array= time
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8.2.4  List Data Type

The externType et_list corresponds to a MathScript list object. 

typedef struct {
externType et;
int nElem;         /* The number of elements in the list */
externType** item; /* an array of pointers to the list elements */

} et_list;

For a summary of et_list functions, see Table 8-5.

Table 8-4 et_pdm Functions 

Function Description and Prototype

WrapPDM( ) et_pdm* WrapPDM(et_matrix *iv, 
et_matrix *theData,
int rows, 
int columns,
et_string *name,
et_string* columnNames,
et_string* rowNames)

Inputs must be previously defined using AllocateMatrix( ) 
and AllocateStringMatrix( ). Like the other wrapping 
functions, no copying is done, so don’t delete the input after 
the call.

DeletePDM( ) Deallocates storage associated with the et_pdm input 
argument.

void DeletePDM(et_pdm* the_pdm)

Table 8-5 et_list Functions 

Function Description and Prototype

AllocateList( ) Allocates a list:

et_list* AllocateList(int N)

DeleteList( ) Deallocates storage.

void DeleteList(et_list* N)
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8.2.5  Null Data Type

The NULL data type corresponds to the Xmath NULL value ([])

.

8.3  LNX and UCI Functions

The functions available for use in LNX and UCI programs (described in 8.4, p.316) 
are described in the following sections. A summary of these functions appears in 
Table 8-7.

Table 8-6 et_null Functions 

Function Description and Prototype

AllocateNull( ) Allocates a null:

et_null* AllocateNull()

DeleteNull( ) Deallocates storage.

void DeleteNull(et_null* N)

DeleteAny( ) (Generic deallocation) Deallocates any externType you 
allocate.

void DeleteAny(externType*)

Table 8-7 LNX Functions 

Function Description
See 
Page

XmathMain( )
(for LNX only)

Sets up the communication facility and transmits 
information about the LNX back to Xmath; it then 
transfers control to your LNX function. Upon 
completion, the results are transmitted back to 
Xmath. 

304

XmathCommand( ) Executes Xmath commands and provides access to 
command and error output. 

306

XmathDisplay( ) Displays a message to the Xmath log window. 307
303



MATRIXX 7.0
Xmath User’s Guide
8.3.1  XmathMain( ) (for LNX only)

XmathMain( ) sets up the communication facility and transmits information about 
the LNX back to Xmath; it then transfers control to your LNX function. Upon 
completion of the LNX function, the results are transmitted back to Xmath. For an 
example, see Figure 8-1, p.295.

int XmathMain(int argc, char **argv, functionData* fData, int flag);

XmathError( ) Allows you to report errors and make log entries. 
Severity levels are described in the file $XMATH/
include/xmathlib.h. The argument in error will be 
highlighted in the Command Window command 
area. 

307

XmathExecute( ) Executes Xmath commands. Xmath windows (except 
for the commands window and the debugger) are 
created as needed. XmathExecute( ) returns 0 if 
successful and an error string otherwise.

308

XmathGet( ) Retrieves the value of a variable from Xmath. 
XmathGet( ) returns 0 if successful and an error 
string otherwise.

308

XmathLoad( )
(for any C or C++ 
program)

Creates externType values from an Xmath data file. 311

XmathPut( ) Copies the contents of a data structure to the Xmath 
environment. 

308

XmathSave( )
(for any C or C++ 
program)

Saves externType values to an Xmath data file. 311

XmathStart( )
(for UCI only)

Starts Xmath. option is a char* that is reserved for 
future Xmath invocation options. The option must be 
an empty string  ("") for this version. 

314

XmathStop( )
(for UCI only)

Terminates the Xmath process immediately. 
Modified variables will not be saved.

314

Table 8-7 LNX Functions  (Continued)

Function Description
See 
Page
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The flag argument to XmathMain specifies whether the process remains resident. 
If this argument has the value LNX_RESIDENT, the process is resident. It remains 
in memory across invocation until Xmath is exited or the LNX is undefined by 
issuing the UNDEFINE command in Xmath. If the flag argument to XmathMain( ) 
is 0, the process is nonresident. It is terminated after each invocation and a new 
process started.

If an LNX function is called often, then it is advisable to make the process 
resident. If the user function allocates a large amount of memory and is called 
infrequently, then it is more memory efficient to make the LNX nonresident. 

The functionData data structure is typically used as follows:

static functionData fdata[] ={
   {"userFun",userFun,minIn, maxIn,minOut,maxOut,help},

{0}
}

Figure 8-1, p.295 shows functionData in relation to the rest of an LNX.

■ fdata is the name of an array that holds the function data. Although it is an 
array, Xmath currently uses only the first element.

■ "userFun" is the name of this LNX; the lowercase version of this name must 
match the filename of the executable LNX program.

■ userFun is the pointer to the function itself.

■ minIn, maxIn are the minimum and maximum number of input arguments, 
respectively. For example, if userFun must be called with no less than two, 
and no more than four inputs, minIn is 2, and maxIn is 4.

■ minOut, maxOut are the minimum and maximum number of output 
arguments, respectively.

Every time userFun is called, Xmath automatically verifies that the number of 
input and output arguments is in the valid range.

■ The optional Help text entry is a char* pointer; 0 can be used if there is no 
Help. The Help text can span multiple lines (as shown in Example 8-1). For an 
additional example on formatting Help, see $XMATH/src/fasthilb.c.

■ The mandatory array terminator {0} comes last.

NOTE:  You can provide a Help file for your LNX just as you can for MSFs, MSCs, 
and MSOs in the same directory as your LNX. If Xmath finds no Help file, it uses 
the optional Help text within the LNX itself. See 6.1.6, p.229 for details.
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Example 8-1 Sample Help Text

/* Define the online Help */

#define Help "\
Description: Produces an n x n matrix\n\
with each element multiplied by -1.\n\
\n\
Syntax:      C = negate(A)\n\
\n\
Inputs:      A is a matrix or PDM.\n\
\n\
Outputs:     C is a matrix or PDM.\n\
\n\
Examples: a = 1:10; negate(a)?\n\
\n\"

8.3.2  XmathCommand( )

XmathCommand( ) is an enhanced version of XmathExecute( ) providing access to 
command and error output. The syntax is as follows:

char **XmathCommand(char *command,int options);

The return value of XmathCommand( ) is a static array of two pointers of type 
char*. The first pointer points to command output, or 0 if none or not requested. 
The second pointer points to an error message caused by the command, or 0 if 
none or not requested. This can be illustrated as follows:

The options parameter is a bit mask defined with the following macros:

Both of these macros are used in the following example:

command error

out[0] out[1]char**out

output message

XMCMD_OUT Returns command output.

XMCMD_ERR Returns command errors.
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char *xmcmd = "foo(bar)?";
char **out = XmathCommand(xmcmd,XMCMD_OUT|XMCMD_ERR);
if (out[0]) {

printf("The output of \"%s\" is %s\n",xmcmd,out[0]);
free(out[0]);

}

else
printf("\"%s\" has no output\n",xmcmd);

if (out[1]) {
printf("\"%s\" resulted in the error: %s\n",xmcmd,out[1]);
free(out[1]);

}
else

printf("\"%s\" has no errors\n",xmcmd);

8.3.3  XmathDisplay( )

XmathDisplay( ) displays a message to the Xmath Log window. The syntax is as 
follows:

void XmathDisplay(char *message);

An example of using this function follows:

XmathDisplay("Have a nice day.");

This output appears in the Xmath Log window.

8.3.4  XmathError( )

XmathError( ) allows you to report fatal and warning errors as well as log entries. 
The syntax is as follows:

void XmathError(errorType error, char* message, int argNum)

Severity levels are described in the file $XMATH/include/xmathlib.h. You can 
specify ERROR_FATAL, ERROR_WARNING or ERROR_LOG. You must also 
specify the input argument number that is in error (a scalar between 1 and the 
number of right-hand side arguments), or specify 0 to indicate the function itself. 
The argument in error will be highlighted in the Command Window command area. 

NOTE:  The error message string returned by XmathCommand( ) is memory 
allocated with the C library function malloc( ). To free this string, use the C library 
function free( ).
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The following code fragment uses XmathError( ) to check whether the first input is 
a matrix.

if (*rhs[0]!= ETMATRIX) {
XmathError(ERROR_FATAL, "Input must be a matrix!", 1); 
return; 

}

This code fragment checks if the matrix is real:

x=(et_matrix*)rhs[0]
if (!x->isReal) {

XmathError(ERROR_WARNING, "Matrix is not real!", 1); 
}

In the above example, we cast the first input into x, an et_matrix pointer, then 
check to see if it is real. 

8.3.5  XmathExecute( )

XmathExecute( ) executes Xmath commands. Xmath windows (except for the 
commands window and the debugger) will be opened as needed. XmathExecute( ) 
returns 0 if successful and an error string otherwise.

char *XmathExecute(char *cmd)

For example, this call opens the Graphics window:

XmathExecute("plot(random(2,3))?"); 

This call opens the Help window:

XmathExecute("help bode;");

For an example of how to use XmathExecute( ), see Example 8-2.

8.3.6  XmathGet( ) and XmathPut( )

XmathGet( ) and XmathPut( ) retrieve and modify Xmath variable values.

NOTE:  The command string must end with a question mark (?) or semicolon (;).

NOTE:  The error message string returned by XmathExecute( ) is memory allocated 
with the C library function malloc( ). To free this string, use the C library function 
free( ).
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XmathGet( )

XmathGet( ) retrieves the value of an Xmath variable. It sets the second argument 
to externType*. XmathGet( ) returns 0 if successful and an error string otherwise. 
The syntax is as follows:

char *XmathGet(char* name, externType** data)

For example:

er_string = XmathGet("data", (externType**)&data);
if (er_string != NULL)
   printf("ERROR: %s", er_string);
switch(*data) {
case ETMATRIX:
   M = (et_matrix*)data;
   break;

case ETSTRING:
   S=(et_string*)data;
   break;

case ETPDM:
   P=(et_pdm*)data;
   break;
}

Notice how the externType pointer is dereferenced to determine the actual data 
type.

XmathGet( ) allocates storage for Xmath variables. If you re-use the variable, be 
sure to deallocate the storage prior to an XmathGet call. For an example of how to 
use XmathGet( ), see Example 8-2.

XmathPut( )

XmathPut( ) creates or modifies an Xmath variable with a given data value. The 
first argument (name) must be a valid Xmath variable name. The second argument 
(data) is a pointer to one of the external types described in the externType Data 
Types section on p.297. XmathPut( ) returns 0 if successful and an error string 
otherwise. The syntax is as follows:

char *XmathPut(char *name, externType* data)

NOTE:  The error message string (er_string) returned by XmathGet( ) is memory 
allocated with the C library function malloc( ). To free this string, use the C library 
function free( ).
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/* allocate a real-valued Matrix struct */
x = AllocateMatrix(n, 1, 1);

/* fill up some local data */
ptx = x->real;
pty = y->real;

for (i = 0; i < n; i++) {
   *ptx = (double)i; 
   *pty++ = sin(*ptx); 
   *pty++ = cos(*ptx++); 
}

/* send local x over to Xmath as variable x */
er_string = XmathPut("x", x);

if (er_string != NULL) {
   printf("ERROR: %s", er_string);
   free(er_string);
   }

For an example of how to use XmathPut( ), see Example 8-2.

8.3.7  Example Using XmathGet( ), XmathPut( ), and XmathExecute( )

Example 8-2 combines the use of the last three functions discussed.

Example 8-2 Using XmathGet( ), XmathPut( ), and XmathExecute( )

n = 10;
y = AllocateMatrix(n, 2, 1); 
/* fill up some local data */ 
pty = y->real; 
for (i = 0; i < n; i++)  
   *pty = (double)i;

/* copy data over to Xmath*/ 
er_string = XmathPut("y", y); 
if (er_string != NULL) {
   printf("ERROR: %s", er_string);
   free(er_string);
   }

/* execute the function */
er_string = XmathExecute("y = log(abs(y));"); 

NOTE:  The error message string (er_string) returned by XmathPut( ) is memory 
allocated with the C library function malloc( ). To free this string, use the C library 
function free( ).
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if (er_string != NULL) {
   printf("ERROR: %s", er_string);
   free(er_string);
   }

/* Free up existing memory associated with y
   before executing XmathGet() */ 
DeleteMatrix(y);
er_string = XmathGet("y", (externType**)&y);
if (er_string != NULL) {
   printf("ERROR: %s", er_string);
   free(er_string);
   }

8.3.8  XmathSave( ) and XmathLoad( )

XmathSave( ) and XmathLoad( ) make it possible for a C or C++ program to save 
and load files in Xmath format without starting Xmath. Both functions make use 
of the externVar data structure:

typedef struct {
   char *name;
   externType *value;
} externVar;

The variable name points to the full name of the Xmath variable, which consists of 
the partition name and the variable name (for example, main.var). value is the 
standard LNX data structure pointer.

XmathSave( ) and XmathLoad( ) both work with an array of pointers to externVars, 
one for each Xmath variable. The name field of the last element of such an array 
must be a NULL pointer.

XmathSave( )

XmathSave( ) has the following prototype:

char *XmathSave (char *filename, externVar *data, int type)

where 

filename is the name of the file to be saved

data is an array of externVar defined above

type parameter is an integer that lets you select ASCII (value 0) or binary 
format (value 1)
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XmathSave returns a NULL pointer for success. If this function fails, it returns a 
string that describes the error.

XmathLoad( )

XmathLoad has the following prototype:

char *XmathLoad (char *filename, externVar **data)

where

filename is the name of the file to load

data is an array of externVar defined above

XmathLoad( ) loads the specified file and constructs an array of externVars, one for 
each variable loaded, and stores the address of the array into data.

XmathLoad( ) returns the NULL pointer for success. If this function fails, it returns 
a string that describes the error.

Standard Library Linkage

XmathSave( ) and XmathLoad( ) are declared in the LNX header file and defined in 
the LNX library. Therefore, a C or C++ program that calls XmathSave( ) and 
XmathLoad( ) should be built and invoked as an LNX or UCI.

For an alternative method of library linkage on UNIX only, see 8.6.2, p.335.

Example of XmathSave and XmathLoad

The following example illustrates how to use XmathSave( ) and XmathLoad( ).

Example 8-3 XmathSave( ) and XmathLoad( )

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xmathlib.h"

#define N          10
#define NAME      "main.m1"
#define FILE_NAME "call5.xmd"
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int main(void)
{
 int k;
 char   name[] = NAME;
 char * status;
 et_matrix * matrix1;
 externVar * my_data, * my_data_1;

 /*== Allocate mem. for 2 data struct. type "externVar" ==*/
 my_data = (externVar *)malloc (sizeof(externVar)*2);
 /*== Backup the pointer ==*/
 my_data_1 = my_data;

 /*====================================================
   MUST set field "name" of LAST (#2) structure to NULL
   ====================================================*/
  (my_data + 1)->name = NULL;

  /*== Allocate mem. for field "name" of struct. "my_data" ==*/
  my_data->name = (char *)malloc (sizeof(char) * (strlen(name)+1));

  /*== Copy str. NAME to field "name" of struct. "my_data" ==*/
  strcpy (my_data->name, name);

  /*== Allocate mem. for "et_matrix" data struct. ==*/
  matrix1 = AllocateMatrix(N, 1, 0);

  /*== Fill in some data ==*/
  for (k = 0; k < N; k++) {
      (matrix1->real)[k] = k;
       (matrix1->imag)[k] = k+1;
  }

  /*== Fill in field "value" after cast to "externType" ==*/
  my_data->value = (externType *)matrix1;

 /*== Save matrix1 (Xmath format) in file = FILE_NAME ==*/
 if (status = XmathSave(FILE_NAME, my_data)) {
      printf ("status = %s\n", status);
      return 1;
 }

 /*== Free each field of every struct. type "externVar"
      Do it in for loop until field "name" = NULL      ==*/

 for (my_data = my_data_1; my_data->name; my_data++) {
      free (my_data->name);
      /*== Free mem. from AllocateMatrix() above ==*/
       DeleteAny(my_data->value);
 }

  /*== Free array of "externVar" ==*/
  free (my_data_1);

   return 0;
  }
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8.3.9  XmathStart( ) and XmathStop( )

The file $XMATH/include/xmathlib.h defines the XmathStart( ) and XmathStop( ), 
which allow your program to communicate with Xmath. Each routine description 
below is followed by a prototype.

XmathStart( )

XmathStart( ) starts Xmath. option is a char* that is reserved for future use. 
Currently, the option must be an empty string  (""). This function returns the 
Xmath process ID (pid)  if successful and 0 if unsuccessful.

int XmathStart(char *option)

XmathStop( )

XmathStop( ) terminates the Xmath process immediately. Modified variables will 
not be saved. This function returns 0 if successful and 1 if unsuccessful.

int XmathStop()

8.3.10  Sample LNX Demonstrating Most Functions (myfun)

myfun( ) has one input and one output. The syntax to invoke myfun( ) is the same 
as for any other MathScript function:

y = myfun(x)

Example 8-4 provides sample code for most of the external program interface 
functions.

Example 8-4  myfun.c

#include "xmathlib.h"
void myfun(int nlhs, externType **lhs, int nrhs,externType **rhs)
{
et_matrix *x,*y;

/* This function is written to indicate how you would use your   */
/* own C code to perform operations on Xmath data objects, and is*/
/* thus quite general. In this example, we manipulate the real   */

NOTE:  On UNIX systems, the filename for an LNX must be in lowercase letters.
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/* and imaginary components of the data separately. Note that    */
/* these elements are DOUBLES. The next line defines storage     */
/* variables for the real and imaginary components of the        */
/* output data matrix.                                           */

double *val, *ival;
int i; /* a counter variable                                     */

/* Do some error checking.                                       */

if (*rhs[0] != ETMATRIX) {
   XmathError(ERROR_FATAL,"Input must be a matrix!",1);
   return;
   }
x=(et_matrix*)rhs[0];
if (x->columns !=1) {
   XmathError(ERROR_FATAL,"Can only work on column vectors!",1);
   return;
   }
if (x->isReal) {
   XmathError(ERROR_WARNING,"Need complex input!",1);
   x->imag=(double*)calloc(x->rows,sizeof(double));
   x->isReal =0;
   }

/* Pre-allocate the output y as a matrix having the same size    */
/* as input x. */

y=AllocateMatrix(x->rows, 1, x->isReal);

/* The following five lines assign the real and imaginary data   */
/* to the variables val and ival respectively. Then 2 is added   */
/* to each of the real components and 3 to each of the imaginary */
/* components. Instead of using the dummy example here, you      */
/* replace these lines with a call to a more sophisticated       */
/* function of your own.                                         */

val = y->real; ival = y->imag;
for (i = 0; i < x->rows; i++) {
   val[i] = 2.0+x->real[i];
   ival[i] = 3.0+x->imag[i];
   }

/* Return y as the first--and in this case, only--output of      */
/* the left side of the function call.                           */

lhs[0]=(externType*)y;
}
static char help[]={"This is the Help text.\n No Help yet."};
static functionData fdata[]={
   {"myfun",myfun,1,1,1,1,help},
   {0,0,0,0,0,0}
   };

main(argc,argv)
int argc;
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char** argv;
{
   XmathMain(argc,argv,fdata,0);
   /* This must always return 0.                                 */
   return 0;
}

8.4  Building and Calling LNX and UCI

In this section, we use the sample LNX file myfun.c (Example 8-4) to illustrate 
how to build an LNX. A UCI is built exactly the same as an LNX.

8.4.1  Building on a UNIX System

To build a makefile and call an LNX on a UNIX system:

1. Copy the sample program myfun.c from $XMATH/src to your working 
directory as follows:

copyfile "$XMATH/src/myfun.c"

2. $XMATH/src/Makefile is the makefile used to build an LNX or UCI. Copy the 
makefile template to your working directory:

copyfile "$XMATH/src/Makefile"

3. Edit the template to put myfun.c on the NAME line and myfun.o on the 
USEROBJECTS line. In addition, specify the appropriate compiler command 
(for example, acc) on the LINK line and appropriate compiler libraries (for 
example, $(CLIBS)) on the LIBS line.

4. Enter the make command from the Xmath command area:

oscmd("make")

or

oscmd("make NAME=myfun USEROBJECTS=myfun.o 
LIBS='-L$(XMATH)/lib -lXmath' LINK=acc")

NOTE:  You can skip this step and use the expanded form of the make command 
below.
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5. Once the make has run successfully, you can call myfun( ) as a regular Xmath 
function:

myfun(1 + jay) 

8.4.2  Sample makefile (UNIX)

Example 8-5 provides a sample makefile for an LNX or UCI. This example 
includes several lines that are user-editable, such as the NAME and DEFS lines. 
Comments in the example explain the required user inputs. In this sample, 
myfun.c is the name of the sample LNX. The required user-input fields appear in 
bold type, but these are normally blank and require your modification.

Example 8-5 Sample makefile for Solaris Platform

# Basic MAKEFILE for creating callable interface/lnx executable

# Following fields must be set (Makefile or command line)

# NAME Prefix name of program that uses the callable 
# interface or of the lnx file you wish to create
# USEROBJECTS List of .o files you wish to link with

# LIBS Name of compiler-specific libraries (suggested 
# Solaris SC4.0 libraries pre-defined in CLIBS, CCLIBS,
# and FLIBS
# LINK Name of compiler or link editor

# Following fields are user-settable

# USERLIBS List of library search paths and/or libraries
# (e.g. library, -Lpath, and/or -llibname)
# DEFS C or C++ pre-processor define directive
# (e.g. -DXTFUNCPROTO)
# UCFLAG User CFLAGS, i.e. options the user wants sent to 
# C compiler (e.g. -g)
# UCCFLAG User CCFLAGS, i.e. options the user wants sent to
# C++ compiler (e.g. -g)
# UFFLAG User FFLAGS, i.e. options the user wants sent to
# FORTRAN 77 compiler (e.g. -g)
# ULDFLAG User LDFLAGS, i.e. options the user wants sent to
# linker (e.g. -v)
# INCLUDE List of directories that are searched for
# #include files
# CC Name of C compiler
# CCC Name of C++ compiler
# FC Name of FORTRAN compiler

NOTE:  Use the simple form only if you edited the makefile.
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        NAME = myfun
 USEROBJECTS = myfun.o
    USERLIBS = 
        DEFS = -DSOLARIS
      UCFLAG = 
     UCCFLAG = 
      UFFLAG = 
     ULDFLAG = 

     INCLUDE = -I. -I$(XMATH)/include

       CLIBS = -L$(XMATH)/lib -lXmath
      CCLIBS = -L$(XMATH)/lib -lXmath_cxx
# F77 and M77 are Solaris Fortran SC2.0 runtime libraries
#      FLIBS = -L$(XMATH)/lib -lXmath_cxx -lF77 -lM77
# F77, M77, and sunmath are Solaris Fortran SC3.0 and SC4.0 runtime
# libraries
       FLIBS = -L$(XMATH)/lib -lXmath_cxx -lF77 -lM77 -lsunmath
        LIBS = $(CLIBS)

          CC = acc
         CCC = CC
          FC = f77 -temp=$(HOME)
        LINK = $(CC)

      CFLAGS = $(DEFS) $(UCFLAG) $(INCLUDE)
     CCFLAGS = $(DEFS) $(UCCFLAG) $(INCLUDE)
      FFLAGS = $(UFFLAG) $(INCLUDE)
     LDFLAGS = $(ULDFLAG)

.SUFFIXES : .o .c .cxx .C .f .F

.c.o:
     $(CC) $(CFLAGS) -c $< -o $@ 
.cxx.o:
     $(CCC) $(CCFLAGS) -c $< -o $@ 
.C.o:
     $(CCC) $(CCFLAGS) -c $< -o $@ 
.f.o:
     $(FC) $(FFLAGS) -c $< -o $@ 
.F.o:
     $(FC) $(FFLAGS) -c $< -o $@ 

$(NAME): $(USEROBJECTS)
     $(LINK) $(LDFLAGS) -o $@.lnx $(USEROBJECTS) $(USERLIBS) $(LIBS)
$@echo " Done."
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8.4.3  Building on a Windows System

To build a makefile and call an LNX on a Windows system in Xmath:

1. Copy the sample program myfun.c from %XMATH%\src to your working 
directory as follows:

copyfile "%XMATH%\src\myfun.c"

2. Enter the following command from the Xmath command area:

oscmd("makelnx myfun.c") 

In general, to build LNXs and UCIs for Xmath use on a Windows system, enter 
the makelnx command with the following syntax:

> makelnx -debug "file1 file2 ..."

For the above command, the default is to build “nodebug” objects unless you 
specify the -debug option.

The above command is a batch file that calls the makefile. Here is the path to the 
batch file and makefile: 

%XMATH%\bin\makelnx.bat
%XMATH%\bin\makelnx.mk

Typically, you will not need to edit or change these files to perform routine build 
tasks. If you do need to customize your build procedures, you can copy these files 
to your local project directory and edit them as required.

If you do not specify a source module filename or list of filenames in the 
command area, the script by default will look in your local directory for a specific 
argument file containing the list of filenames. These default argument files require 
a filename extension of .arg and must have a name that matches the name of the 
corresponding build command. For example, makelnx.arg is used by makelnx.bat. 
In these argument files you include a list of your files to compile and link. 

The filenames can be separated by spaces or placed on separate lines and any text 
on a line following ‘\ ’ (backslash space) will be treated as comment text.

All target filenames specified with the above “make” commands must have a 
suitable file extension because this determines the choice of compiler for each file. 
The default file extensions currently supported include:

NOTE:  Filenames can be separated by spaces or placed on separate lines with a 
continuation character ‘\’ appended at the end of the previous one.
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Like most standard make facilities, the above “make” commands support 
conditional compilation and linking of files depending on file creation time and 
whether the necessary dependent files currently exist. This means that recompiles 
will only be done for files where source is newer than the corresponding object 
file. If you need to force recompilation of a source module, delete the 
corresponding object file. 

The make commands automatically create a log in your current working 
directory. The log filename has an extension of .log (for example, makexxx.log). 
Upon completion of the make, a copy of this file remains in your local directory in 
case you need to review the contents of the make.

If you need to customize your builds, each of the make script source files 
described above contains a commented section highlighting several predefined 
macro strings that you can modify as needed to customize the build process. 
Follow the instructions provided in the files.

8.4.4  Undefining an LNX

If an existing resident LNX file is relinked while Xmath is running, use the 
undefine command to terminate the current LNX process so that the new LNX is 
used upon the next invocation.

8.4.5  Using the User-Callable Interface

The User Callable Interface (UCI) program uses the function XmathStart( ) to 
invoke Xmath. Any inputs that will be used in Xmath are copied from the user 
program to Xmath objects using XmathPut( ). Once all inputs are copied over to 
the Xmath process, any Xmath statement can be executed using XmathExecute( ) 
or XmathCommand( ). Any data transferred to Xmath and altered can be retrieved 
using XmathGet( ) or saved to a file using XmathSave( ). The Xmath process is 
terminated using XmathStopv( ). 

C .c

C++ .cxx  or .cpp  or .cc 

FORTRAN .for  or .f
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8.4.6  Building and Calling a UCI

A UCI is created in the same way as an LNX. A UCI is invoked by specifying the 
-call option to the command  to start Xmath:

xmath -call myuci.ext

xmath -tty -call myuci.ext

where ext =  lnx on UNIX machines and exe on PCs. 

Any required arguments to myuci can be supplied at the end of the command line.

8.4.7  LNX Example

Example 8-6 provides an example of the LNX function negate( ). The negate( ) 
function works exactly like the minus (-) operator on matrix and PDM inputs. The 
function returns an error if the input is a string.

Example 8-6 negate( )

#include "xmathlib.h"
void negate(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
/* lhs is a pointer to the return arguments */
/* rhs is a pointer to the input arguments */
externType **lhs, **rhs;  
{
   int number_elem, i;
   et_matrix *input;
   et_pdm  *in_pdm;
   double *in_data;
   switch(*rhs[0]) {
      case ETMATRIX: {
        input = (et_matrix *)rhs[0];
        in_data = input->real;
        number_elem = input->rows * input->columns;
        for(i=0; i < number_elem;i++, in_data++) 
           *in_data = -(*in_data);
        lhs[0] = (externType*)input;
        break;
      }
      case ETPDM:{
        in_pdm = (et_pdm *)rhs[0];
        in_data = in_pdm->theData->real;
        number_ele =in_pdm->theData->rows*in_pdm->theData->columns;
         for(i=0; i < number_elem; i++, in_data++)
             *in_data = -(*in_data);
         lhs[0] = (externType*)in_pdm;
        break;
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      }
      default:
         XmathError(ERROR_FATAL, 
               "Data Type not supported in this function", 1);
   }
}

/* Define the online Help */

#define Help "No Help yet"

/* Holds the function information: */

static functionData fdata[] = {
   {"negate", negate, 1, 1, 1, 1, help},
   {0}
};

main(argc, argv)
int argc;
char **argv;
{
   int resident = 0;
   XmathMain(argc, argv, fdata, resident);

return 0;
}

8.4.8  UCI Examples

Example 8-7 is a UCI program that uses the Xmath log( ) function to calculate the 
logarithm of an input. This file is found in $XMATH/src/call.c. Example 8-8 is a 
UCI example that uses Xmath graphics in an external C program.

Example 8-7 Xmath as a Computational Engine

#include <math.h> 
#include <stdio.h>
#include "xmathlib.h"
int doMyProgram() 
{ 
et_matrix *x, *y; 
double *ptx, *pty; 
int n, i;
n = 10;

/* allocate two matrix structs */

x = AllocateMatrix(n, 1, 1); 
y = AllocateMatrix(n, 2, 1);

/* fill up some local data */
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ptx = x->real; 
pty = y->real; 
for (i = 0; i < n; i++) { 

*ptx = (double)i; 
*pty++ = sin(*ptx); 
*pty++ = cos(*ptx++); 
}

/* send local x and y over to Xmath as variable y.
   Check for errors*/

er_string = XmathPut("y", y);
if (er_string != NULL)
   printf("ERROR: %s", er_string);

/* execute an Xmath function */
 
er_string = XmathExecute("y = log(abs(y));");
if (er_string != NULL)

printf("ERROR: %s", er_string);

/* Get y back. have to delete the current y since we 
* get a new one from XmathGet.*/

DeleteMatrix(y); 
er_string = XmathGet("y", (externType**)&y);
if (er_string != NULL)
  printf("ERROR: %s", er_string);

/* Output the new y */
 
pty = y->real; 
for (i = 0; i < n; i++) 

fprintf(stdout, "%g %g\n", *pty++, *pty++); 
}
int main(argc, argv) 
unsigned argc; 
char** argv; 
{ 
XmathStart(""); 
doMyProgram(); 
XmathStop(); 
return 0; 
} 

Example 8-8 Xmath as a Graphics Engine

#include "xmathlib.h"
#include <stdio.h>

/* Generate some test data */
double data[8] = {0.0, 1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0};
int number_points = 8;

int DisplayVector(vector, columns)
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double *vector;
int columns;

{
   et_matrix *thedata;
   int real = 1;
   char *er_string;

/* Convert the data array to the data type et_matrix, so 
   Xmath will recognize it*/

   thedata = WrapMatrix(1, columns, vector, 0);

/* Copy the data over to the Xmath child process */

er_string = XmathPut("thedata", (externType*)thedata);
if (er_string != NULL)

printf("ERROR: %s", er_string);

er_string = XmathExecute("plot(thedata)?");
if (er_string != NULL)

printf("ERROR: %s", er_string);

/* The plot is now drawn, and the user can interact with
   the window, adding text, changing colors, etc*/

XmathExecute("pause");
}
int main(argc, argv)
   unsigned argc;
   char**   argv;
{
/* Start the Xmath process */

XmathStart("");

/* Send data to be plotted */
DisplayVector(data, number_points);5

/* Stop the Xmath child process */
XmathStop();
return 0;

}

Any plot can be saved to a PostScript or HPGL file using the hardcopy command:

XmathExecute("hardcopy file=\"mygraph\", {ps}");

The C escape character \ (backslash) is necessary for the embedded Xmath string.

8.4.9  Calling an LNX in Background Mode

If an LNX performs a long calculation, you can invoke the LNX in background 
mode so that you can continue to use Xmath for other tasks while the LNX runs.
324



8

8
External Program Interface
Another scenario where a background LNX is useful is where the LNX is a GUI 
application (see Advanced Background LNX Function (IPCWC) on p.335) for 
information on how to communicate with a background LNX).

Example

To invoke the LNX myfun( ) in background mode, issue the following command:

[output] = (define myfun, {background})(1000);

The return value, output, will be “busy” during the background LNX’s execution. 
In this example, 1000 is the input argument to myfun( ).

Given the above example, typing the command WHO (which lists variables) in 
the Xmath window shows that output is busy:

who

output -- busy (job #13103)

After the background define command for the LNX process has been entered, the 
process will be spawned to run in background mode and the user will have 
immediate control of the Xmath command area.

Upon completion of the background LNX process, notification of the process 
termination status appears in the Xmath log area, after you press Return.

[out]=(define myfun, {background}) (1000); 
(job 13103) has terminated normally.

Example 8-9 is an example of an LNX program that can run in either foreground 
or background mode. 

Compile this sample LNX program using the steps described in 8.4.1, p.316. To 
see how to run the sample program in background mode, refer to Advanced 
Background LNX Function (IPCWC) on p.335.

Example 8-9 getpi (Runs in Foreground or Background)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "xmathlib.h"

/* This sample lnx program calculates the value of pi based on the */
/* number of randomly-generated (x,y) points that fall within the  */
/* upper right quarter of the unit circle.                         */
/*                                                                 */
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/* Test using an input value between 500000 and MAXRANDOM.         */

#define REAL1
#define MAXRANDOM((double) (exp(31 * log(2.0))-1)) /* (2**31) - 1 */

void getpi(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
externType **lhs, **rhs;
{
   externType *data;
   et_matrix  *arg;
   et_matrix  *out;
   long        steps;
   double      x, y, r;
   double      p_i;
   char        buffer[255], *errstr;
   int         count; /* Number of random points inside unit circle */

   if (nrhs != 1) {
      /* User did not provide an integer argument. Go to Xmath's */
      /* main partition and get the variable `step_number'.      */
      errstr = XmathGet("main.step_number", &data);
      if (errstr != NULL) {
         sprintf(buffer, "Error getting main.step_number : %s",
            errstr);
      XmathError(ERROR_FATAL, buffer, 1);
      free(errstr);
      return;
      }

   if (*data != ETMATRIX) {
      XmathError(ERROR_FATAL, "Usage: getpi number", 1);
         return;
      }
      arg = (et_matrix*) data;
      XmathExecute("main.pi = 0;"); /*create the result variable*/
   }  else {
      /* User provided an integer argument to the lnx */
   if (*rhs[0] != ETMATRIX) {
      XmathError(ERROR_FATAL, "This LNX requires a number!", 1);
      return;
      }
   arg = (et_matrix*) rhs[0];
}

   srandom((int) time(0)); /* Start random number generator */

   count = 0;
   for (steps = 0; steps < (int) arg->real[0]; steps++) {
      /* Get x and y coordinate values between 0 and 1 */
      x = random() / MAXRANDOM;
      y = random() / MAXRANDOM;
      r = sqrt( (x * x) + (y * y) );
      if (r <= 1.0)
         count++;
      }  
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   p_i = 4.0 * count / steps;
   fprintf(stderr, "%ld steps: p_i = %f\n", steps, p_i);

   out = AllocateMatrix(1, 1, REAL);
   nlhs = 1;
   out->real[0] = p_i;
   lhs[0] = (externType*) out;

   if (nrhs != 1) {
      XmathPut("main.pi", (externType*) out);
      DeleteAny(data);
   }
}

functionData fdata[] =
{{"getpi", getpi, 0, 1, 0, 1, "Help text for getpi" }, {0} };

main(argc, argv)
int argc;
char **argv;
{
   fprintf(stderr, "Starting ...\n");
   XmathMain(argc, argv, fdata, 0);
   fprintf(stderr, "Stopping ...\n");
   return 0;
}

8.4.10  Removing an LNX Job

When an LNX is invoked in background mode, Xmath echoes a job number 
(which is really its process ID) to the log area. This job number can be used as 
input to the REMOVE JOB command. 

REMOVE JOB job_number 

The REMOVE JOB command uses the specified job number to terminate the LNX. 

8.4.11  Building an LNX to Link a FORTRAN Routine 

Xmath provides two ways to create an LNX function based on FORTRAN code. 
The preferred approach is to use C as described in the previous sections and then 
transfer control to your FORTRAN subroutine from within C. The second method 
is to use the special FORTRAN interface to LNX described in this section. This 
approach is less complete due to limitations in FORTRAN, and it is recommended 
only for users who don’t know C.
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Calling FORTRAN from C LNX Files

There are three important points to remember when calling a FORTRAN routine 
from C: name linkage, argument linkage, and array ordering.

1. (UNIX Only) In C, append an underscore (_) to the end of the name of the 
FORTRAN routine you need to call. You will need to define the FORTRAN 
function as a void external function within your C routine. (Some 
architectures do not support underscores.)

2. FORTRAN expects subroutine arguments to be passed by reference (address). 
Here is a sample FORTRAN subroutine:

subroutine fort(n, a)
double precision a(n)
integer n

To call the above subroutine from C, you need:

double *a; 
int n;
fort_(&n, a)

Here you pass the address of n. Note that the variable a is already an address.

3. FORTRAN stores two-dimensional arrays in column-major, as opposed to 
row-major, mode. This means that sequential elements of a FORTRAN array 
that comprise the columns and sequential elements of a C array run along the 
rows of the array.

Creating FORTRAN LNX Files

The C interface to LNX described above is the preferred method of presenting 
external FORTRAN code as an Xmath function. However, for users who may not 
be familiar with the C language, a FORTRAN interface that does not require any 
C programming is also provided.

To get started using FORTRAN LNX you may want to study the file template.f in 
$XMATH/src. This file is an example of how to link a FORTRAN matrix-vector 
multiply routine into Xmath. You must supply an initialized common block 
named fdata declared as:

character *10 name 
integer minIn, maxIn, minOut, maxOut 
common /fdata/ minIn, maxIn, minOut, maxOut, name
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The template does this by using a block data section where it initializes the 
common block with data statements. These parameters have the same meaning as 
the fields of the functionData structure in 8.3.1, p.304. Currently the name is 
ignored, and the name of the LNX function will be the name of the generated 
LNX executable file.

You must also supply a subroutine named ftnlnx with the calling sequence. The 
template ($XMATH/src/template.f) gives an example of a ftnlnx subroutine. 

 subroutine ftnlnx(thefun, 
! nin, stkin, locin, cmxin, rowin, colin, 
! nout, stkout, locout, cmxout, rowout, colout, 
! howmuch, error) 
 integer thefun 
 integer nin,locin(nin),cmxin(nin),rowin(nin),colin(nin)
 integer nout,locout(nout),cmxout(nout),rowout(nout),colout(nout)
 integer howmuch, error 
 double precision stkin(*), stkout(howmuch)

The meanings of the parameters are described in Table 8-8.

Table 8-8 ftnlnx Parameters 

Parameter Function

thefun: For future expansion. Set to 1 in this version.

nin The number of input arguments.

stkin A “stack” of the input matrices.

locin An array indicating the index in stkin of each input matrix. 

For example, input argument 2 starts at position locin(2), so the (1,1) 
element of input argument 2 is stkin(locin(2)), and the (2,1) element is 
stkin(locin(2)+1).

cmxin cmxin(i) is 1 if input argument i is complex. Zero otherwise. 

rowin rowin(i) gives the number of rows of input argument i.

colin colin(i) gives the number of columns of input argument i.

nout The number of output arguments requested by the Xmath user.

stkout, locout, cmxout, rowout, and colout are analogous to stkin, locin, cmxin, 
rowin, and colin, except that they pertain to the output arguments. You are responsible 
for setting these values completely and correctly.
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The typical sequence in ftnlnx will be to:

1. Unpack the input stack (stkin).

2. Pass control to your desired FORTRAN subroutine.

3. Pack the output arguments in stkout (and set locout, cmxout, rowout, and 
colout).

The routines discussed in previous sections (XmathError, AllocateMatrix, etc.) are 
not available in FORTRAN LNX.

8.5  Debugging

Debugging procedures for LNXs and UCIs involve setting breakpoints and then 
analyzing errant behavior versus expected behavior as described in the following 
sections.

8.5.1  Debugging an LNX with dbx (on UNIX Systems)

1. Create an LNX called myfun.lnx with debug information.

You can modify the make command itself (see Step 4, p.316) by adding the 
debug option (for example, UCFLAG = -g) or by changing the appropriate 
user-defined flag within the makefile itself (for example, UCFLAG = -g or 
UCCFLAG = -g) (see Sample makefile for Solaris Platform on p.317).

2. You must indicate that you want the debugger to ignore the USR1 
interprocess signal handler.

howmuch Indicates how much space is reserved in stkout. That is, you should regard 
stkout as an array declared as double precision stkout(howmuch).

error a user-settable error flag. 

if error >  0 - fatal error
if error <  0 - warning
if error == 0 - no error

Table 8-8 ftnlnx Parameters  (Continued)

Parameter Function
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● For dbx under SunOS, create a file called .dbxinit with this line:

ignore USR1

● On HP-UX, create a file called .xdbrc with this line:

z 16sr

3. Issue the Xmath DEBUG command:

debug myfun

4. Now call the function:

myfun(1+jay)

Xmath displays the debug LNX dialog window and then pauses. The debug 
message dialog will have a message similar to,

dbx ./myfun.lnx 8134

where dbx is followed by the LNX function and the process ID. 

5. To start the dbx process with the LNX process attached, type or copy the 
above command into a UNIX shell.

6. In dbx, set a breakpoint in myfun( ) with the command:

stop in myfun

7. Issue the dbx continue command by typing cont in the debugger.

8. Return to Xmath and dismiss the debug LNX dialog.

Immediately, dbx breaks at the breakpoint previously set. You can start 
debugging the function.

9. When you finish debugging the function, issue the dbx CONT command.

Xmath returns with the output of the LNX function. 

10. When the debug session is complete, use the dbx DETACH command to 
detach the LNX process from dbx.

For resident functions, Xmath automatically turns off debug mode for LNXname 
after it returns. If you want to debug the LNX function with another set of inputs, 
call LNXname again. This time, however, Xmath will not display the debug 
dialog. On the other hand, if you haven’t removed the breakpoint in dbx, the LNX 
process will break at the same breakpoint. The function can then be debugged 
with the new inputs.
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Specifying an LNX to be nonresident means that the LNX is automatically 
undefined after it finishes. Therefore, the debugging mode is forgotten. This 
makes MSF and LNX debug mode behavior consistent, because undefining an 
MSF also makes Xmath forget everything about the MSF, including the debug 
mode.

8.5.2  Debugging LNXs (on Windows systems)

To debug an LNX, use the following procedure:

1. Create an LNX called myfun.exe with debug information as described in 
Building on a Windows System on p.319:

makelnx (-debug) myfun.c 

This creates an LNX called myfun.exe.

2. Go to Xmath Commands window and call the LNX:

debug myfun

myfun(1+jay)

3. A dialog box (myfun.exe-Application Error) appears with the message: 

A breakpoint has been reached. Click Cancel to go into the debugger.

Then another dialog appears with the message: 

Break caused by hard coded breakpoint instruction.

Click OK in this dialog.

4. Now, select Debug→Breakpoints.

A Breakpoints dialog appears. 

5. In the Location area, enter myfun. Click Add to add the name to the 
breakpoints column. Click OK to dismiss the dialog. 

6. Select Debug→Go from the Debug pull-down menu.

The debugger will now stop at the breakpoints you have specified.

7. When you are finished debugging, select Debug→Breakpoints. When the 
Breakpoints dialog appears, click Clear All to clear the breakpoints. Click OK to 
dismiss the dialog box. Select Debug→Go.

The LNX will run to completion.
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8. To exit the debugger window, select File→Exit.

8.5.3  Debugging UCIs (on UNIX systems)

To debug a UCI on a UNIX system, perform the following procedure:

1. Create a UCI with debug information as described in Building on a UNIX 
System on p.316.

2. Debug the UCI using dbx:

xmath -call dbx uci.lnx

3. Now, set a breakpoint in myfun.c with the command:

stop in myfun

For each function you want to debug.

4. Enter run.

The debugger will now stop at the breakpoints you have specified.

5. When you are finished debugging, clear the breakpoints and type cont to let 
the UCI run to completion.

6. To exit the debugger, type quit.

8.5.4  Debugging UCIs (on Windows systems)

To debug a UCI on a Windows system, perform the following procedure:

1. Create a UCI with debug information as described in Building on a Windows 
System on p.319.

2. Debug the UCI using MSVC:

xmath -call msdev uci.exe

3. Now, select Debug→Breakpoints.

A Breakpoints dialog appears. 

NOTE:  Do not exit the debugger until the LNX runs to a completion.

NOTE:  Do not exit the debugger until the UCI runs to a completion.
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4. In the Location area, enter the name of the function you want to debug. Click 
Add to add the name to the breakpoints column. Keep doing this for all of the 
desired breakpoints. Click OK when you have finished. 

5. Select Debug→Go.

The debugger will now stop at the breakpoints you have specified.

6. When you are finished debugging, select Debug→Breakpoints. When the 
Breakpoints dialog appears, click on Clear All to clear the breakpoints. Click 
OK to dismiss the dialog. Select Debug→Go from the Debug pull-down menu 
to let the UCI run to completion.

7. To exit the debugger, select File→Exit.

8.6  Advanced Topics

8.6.1  Handling an Aborted LNX

The following MathScript command

set debugonerror off

allows a script to resume execution after an LNX that it calls terminates 
abnormally. Without using this command, a script will be aborted if the LNX that 
it calls terminates abnormally.

For example:

command callsegv
   set debugonerr off # allow this script to resume if segv() aborted
   out = []           # assuming segv() never returns a []
   out = segv()       # an LNX that terminates abnormally
   if out == []      # if segv() aborted,
      display "segv() failed."
   else
      display "segv() returned successfully."
   endif
endcommand

NOTE:  Do not exit the debugger until the UCI runs to a completion.
334



8

8
External Program Interface
If an LNX process terminates abnormally, Xmath prints out a message similar to 
the following:

Process name has terminated abnormally (Signal #)

The signal number is the UNIX error code. These codes are standard on UNIX 
systems and are described in the file /usr/include/sys/signal.h. 

void XmathPanic()

8.6.2  Advanced Features and Notes

On UNIX systems only:

■ When an XmathSave( ) or XmathLoad( ) link is called, an Xmath process called 
xmathsl is invoked. To avoid this overhead, you can link with the libxmsl.a 
library in addition to libXmath.a (libXmath.a must follow libxmsl.a in the link 
command). You will need the standard C++ library supported for your 
platform for the link, typically by including -lC in the link command line.

That is, the standalone saveload document references the last line of this file:

$(CC) -o $@.lnx $(USEROBJECTS) -L$(LIBS) $(USERLIBS) -lXmath

which must be changed to the following:

$(CC) -o $@.lnx $(USEROBJECTS) -L$(LIBS) $(USERLIBS) -lxmsl 
-lXmath -lC

■ LNX and UCI use the signal USR1 as part of communications processes; do 
not modify this signal’s handler.

8.6.3  Advanced Background LNX Function (IPCWC)

IPCWC allows you to communicate with a background LNX process that is also a 
windows client. First, a message is sent to the LNX with the specified window ID 
(wid) and the process ID (pid). Additional data (the arguments listed) is then sent 
to the LNX (formatted according to the specifiers in the format string, as 
applicable). The calling syntax is:

NOTE:  XmathPanic should be in your LNX or UCI program’s Ctrl-C signal handler 
to clean up after an abnormal stop. The syntax is as follows:
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IPCWC wid, pid, format_string, arg_list ...

■ The format specifiers are codes consisting of the percent sign (%) and a 
character. They are:

%c A single character.
%d A decimal number.
%s A string.

■ All non-format specifiers are sent as individual characters.

■ The LNX process receives data with the calls shown in Table 8-9. 
XmathIPCgets returns a malloc'ed string. Remember to free it when done.

■ $XMATH/include/xmathlib.h contains the definition for optional flags, such as 
LNX_USE_IPC. In a background call, XmathReleaseIPC( ) detaches an LNX. 
The last argument in the XmathMain( ) call sets the LNX_USE_IPC flag. The 
callback LNX function, defined in the functionData structure, is responsible 
for calling XmathReleaseIPC( ).

wid Window ID (a number).

pid Process ID (a number).

format_string A string with format specifiers (as described below).

arg_list The values to be sent. You can have as many values as you 
like, as long as they are separated by commas and each 
one maps to a format specifier in format_string.

Table 8-9 Background LNX Functions 

Function Description and Prototype

XmathIPCgetc( ) XmathIPCgetc( ) returns a character from the IPC stream to 
the LNX process.

char XmathIPCgetc()

XmathIPCgeti( ) XmathIPCgeti( ) returns an integer from the IPC stream to 
the LNX process.

int XmathIPCgeti()

XmathIPCgets( ) XmathIPCgets( ) returns a malloc string from the IPC stream 
to the LNX process. Remember to free the string when you are 
done.

char *XmathIPCgets()
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Sample IPCWC Calling Sequence

The following sample IPCWC calling sequence sends the character H followed by 
the number 104 to an LNX that has window ID 9999 and process ID 99:

ipcwc 9999, 99, "H%d", 104

The next step is to send the character B followed by character A, the string "Test1", 
and then the ID number 5 to an LNX that has window ID 9999 and process ID 99.

ipcwc 9999, 99, "B%c%s%d", "A", "Test1", 5

ipcwc 9999, 99, "B%c%s%d&s", "A", "Test1", 5, status

Example 8-10 shows a pseudocode LNX example that uses some of the 
XmathIPCget call. Example 8-11 is pseudo-code for a sample LNX program using 
IPCWC.

Example 8-10 Sample Usage of ipcwc to Communicate with a Background LNX

#
#  action = SaveFile or LoadFile
#
Command SendAction action, file_name

wid = 9999;
pid = 99;

if (!is(action, {string}))
   error("Argument 'action' must be a string", "F")
endif

if (!is(file_name, {string}))
   error("Argument 'file_name' must be a string", "F")
endif

ipcwc wid, pid, "%c %s", stringex(action, 1, 1), file_name

endCommand

Example 8-11 Pseudo-Code for an LNX that Responds to ipcwc

#ifdef UNIX

NOTE:  To ensure proper handshaking between the client and server in 
sophisticated LNXs, the client program should wait for a status from the client; 
when the client has finished reading it should return the status via 
XmathIPCputs( ). For example:
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#include <X11/Xlib.h>

/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message(Window wid)
{
   XEvent xclient;
   extern Display *dpy;
   xclient.xclient.message_type = 0;
   xclient.xclient.type = ClientMessage;
   strcpy(xclient.xclient.data.b, "XMATH");
   xclient.xclient.format = 8;
   XSendEvent(dpy, wid, 0, NoEventMask, &xclient);
   XFlush(dpy);
}

/* This is how to detect a window message sent by the ipcwc command */
/* The following is a typical X event loop                        */
...
XEvent event;
switch (event.type) {
case ClientMessage:
if (Is_ipcwc_window_message(&event)) {
   action = XmathIPCgetc()
   switch (action) {
      case 'S':
      savefile = XmathIPCgets()
...
      case 'L':
      loadfile = XmathIPCgets()
      ...
      default:
   ...
   }
}
else {
   /* other ClientMessage messages                                   */
}

int Is_ipcwc_window_message(XEvent *event)
{
extern Display *dpy;
XClientMessageEvent *xclient;
Atom wmpAtom, wmdAtom;
xclient = (XClientMessageEvent *) event;
wmpAtom = XInternAtom( dpy, "WM_PROTOCOLS",     True );
wmdAtom = XInternAtom( dpy, "WM_DELETE_WINDOW", True );
return ((wmpAtom == None || wmdAtom == None ||
xclient->message_type != wmpAtom ||
xclient->data.l[0] != wmdAtom)
&& !strcmp( "XMATH", xclient->data.b ));
}

#else

#include <windows.h>
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/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message(HWND hwnd)
{
   PostMessage(hwnd, WM_USER, 0, 0);
}

/* This is how to detect a window message sent by the ipcwc command */
/* The following is a typical Windows event loop */
   ...
   switch (message) {
   case WM_USER:
   /* ipcwc Window message detected */
   }
#endif
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This chapter introduces Xmath’s fully programmable graphical user interface 
(PGUI or GUI). 

The GUI is available on all MATRIXX platforms. The GUI allows arbitrary 
windows to be created and manipulated using only Xmath source code 
(MathScript). GUI windows might contain, for example, sliders, pushbuttons, 
menus, and plot areas, all of which can accept user input from the mouse. Xmath 
simultaneously supports user interaction in any number of newly created GUI 
windows, as well as through each of its standard windows.

The GUI provides a number of predefined dialogs that can be used to interact 
with the user. These dialogs are a collection of modal dialogs that are used by 
most applications. When called they suspend command execution until the user 
responds to the dialog. Once the user responds, the response is returned and 
command execution resumes.

9.1  Finding Out About the GUI

Whether you are a GUI tool user or a developer, you will want to learn about the 
GUI, although the ultimate learning will be at different levels.
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9.1.1  GUI Tool Users 

GUI tools are simple and intuitive to use, but there are a few basic things you 
should know. You should run guidemo and look at some of the examples, 
especially leadlag, to get a feel for the features and capabilities of GUI tools. Each 
GUI tool has extensive Help menus describing its use. Browsing through Help 
messages is a good way to learn what a tool does. 

9.1.2  GUI Developers 

You might also want to develop your own GUI tools. For example, you might add 
a graphical user interface to an existing Xmath command script. Programming 
with the GUI is more difficult than writing your own Xmath commands and 
functions, so delay trying this until you are quite comfortable programming in 
Xmath and using GUI tools.

To develop your own simple tools using the GUI, we recommend that you run the 
GUI demos while looking at the corresponding source code, which is in $XMATH/
demos/gui. The next step is to read the Help entries for the GUI functions in the 
MATRIXX online Help. Each function has an example, consisting of an Xmath 
command that creates a PGUI tool. Start with uiToolCreate( ). For this and other 
examples where an Xmath command is defined:

■ Use a text editor to create a new Xmath command file.

■ Copy the example command script into the file.

■ Name the file commandname.msc and save it to a folder included in the lookup 
path.

■ Execute the command by typing its name in the Xmath command area.

For example, to run the uiToolCreate( ) example, copy the entire ex_uiTool 
command to a file named ex_uiTool.msc. Save that file to a folder in your lookup 
path. In the Xmath command area, type ex_uiTool and press Enter.

9.1.3  Running the GUI Demos

To see a menu of Programmable GUI examples, type guidemo in the Xmath 
command area. This displays the menu shown in Figure 9-1.
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Figure 9-1 lists a number of GUI demos. You can run several demos at once.

To run a demo:

1. Select a demo (for example, Variable Binding).

2. Click OK.

In a few seconds the demo appears. (Your window manager may require you 
to position the window(s) generated by the demo.)

Each demo has a Help menu in its menu bar (near the upper right side of the 
window). The Help messages explain how to interact with the demo and 
what it does. It may be helpful to read the rest of this chapter before (or while) 
you try the demos.

3. To exit a demo, select Special→Exit or File→Exit from the individual demo 
window.

To see another example of a GUI implementation, type ifilter in the commands 
window command area.

Figure 9-1 Programmable GUI Examples 
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9.2  Interacting with a GUI Application

This section describes the mechanics of interacting with GUI windows. First, we 
create an example dialog and then we discuss the various kinds of GUI objects 
that you can place in a dialog or window and how to use them. 

9.2.1  Creating an Example Dialog

Tools that use the GUI create windows that contain control elements such as 
pushbuttons, sliders, pulldown menus, plots, and lists. Some of these elements 
are shown in Figure 9-2, the PGUI Example dialog. 

If you are a user only, you might want to just create the dialog without paying 
much attention to the individual commands that follow. If you are a developer, 
this is another example from which you can learn.

To create the dialog in Figure 9-2, type the following in the Xmath command area:

tl = uiToolCreate("guiexhelp");
mw = uiWindow(tl,{title="PGUI Example"});
tb = uiTable(mw,{height = 200, columns = 2});
void = uiButton(tb,{ text = "Do It"});
void = uiButton(tb,{ type = "toggle", text = "Toggle Button"});
void = uiLabel(tb,{ text = "v value"});
void = uiSlider(tb, {varname = "main.v", min = 0, max = 10});
void = uiVarEdit(tb, {varname = "main.w", text = "w value" });
void = uiShow(mw);
main.v = 5;
main.w = 12;

To kill the dialog in Figure 9-2 type:

uiDestroy("guiexhelp")

Figure 9-2 PGUI Example Dialog
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9.2.2  Controlling GUI Objects

You can control most functions with the left mouse button. For example, you can 
activate a button by placing the mouse pointer anywhere on the button and 
clicking the left mouse button. The PGUI Example dialog has two buttons: Do It 
and 12.

Other objects behave as follows:

■ A toggle button (square shaped) is either on or off. Its indicator is filled in 
when it is on. It can be toggled by pointing and clicking the left mouse button. 
The toggle button shown in Figure 9-2 is off. Activating a toggle button 
causes some action to be performed.

■ Radio buttons (diamond shaped) are a group of buttons with “radio” behavior. 
Like the station selection buttons on a radio, selecting one button 
automatically turns off any other button that is on.

■ A pulldown menu is displayed by depressing and holding the left mouse 
button. As the mouse is dragged, the various menu selections (usually 
pushbuttons) are highlighted. Releasing the mouse activates the selected 
button.

A cascade menu is indicated by a small arrow to the right of the text in the 
button. The cascade menu is displayed by moving the mouse to the right.

■ A text entry area behaves like the command input area in Xmath. Input is 
terminated by a newline character. Before you can type into a text entry area, 
you must focus on the area by placing the mouse pointer in the area and 
clicking the left mouse button. Focus is indicated by a border highlight.

■ A list is a vertical list of items (strings) that can be selected (highlighted). 
Depending on the application, a list can be configured to allow various types 
of selection:

● A single-selection list allows only a single line to be selected. Clicking the 
left mouse button selects a line. 

● A multiple-selection list allows multiple lines to be selected. The selection 
of a single line is toggled by clicking with the left mouse button.

● An extended-selection list also allows multiple lines to be selected. A 
contiguous range of items can be selected by pressing the left mouse 
button, dragging the mouse, and releasing. Depressing Shift and the left 
mouse button selects all the items from the current item to the previous 
item that was selected with the left mouse button. Depressing Control and 
the left mouse button augments (rather than replaces) the existing 
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selections. This allows discontiguous ranges of items to be selected. This 
type of list is used in the history sorting and history column dialogs in the 
leadlag demo.

Once you select one or more items from a list, you then choose some action 
such as Delete or Display.

■ A dialog is a small window that can contain a message and one or more 
buttons. For example, a dialog might have a single button and a message 
giving a warning or indicating an error. 

Usually a dialog is modal—that is, you cannot interact with any other GUI or 
Xmath window until the dialog has been closed. If you find you can’t interact 
with Xmath or other GUI windows, then look for a modal dialog that might 
have been accidently covered by another window.

■ Help messages are often listed under a Help pulldown menu at the top-right of 
the GUI window. The Help message appears in a new window that provides 
scroll bars as needed. The scroll bars are operated with the left and middle 
mouse buttons. The window is dismissed by selecting the Close button.

■ A variable edit box appears in a GUI window as a button that displays some 
value. The value can be changed by selecting the button, whereupon a text 
entry area appears in place of the button. You can type a new value followed 
by Return. If the GUI tool doesn’t like your new value, it reserves the right to 
change it to an acceptable value that is displayed again on the button.

The pushbutton labeled 12 shown in Figure 9-2, p.344 is a variable edit box 
(displaying the value of the variable w). If you press this button, it is replaced 
by the “w value” text entry area as shown in Figure 9-3. After entering a value 
from the keyboard, the text entry area is replaced by a button that contains the 
new value.

Figure 9-3 PGUI Example Dialog after Pressing the 12 Button
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■ A slider resembles a linear potentiometer and its value is changed by a linear 
motion of the handle. The position of the slider ’s handle represents its value. 
Usually the limits of the slider are shown at its ends. Figure 9-3 shows a slider 
with minimum value 0 and maximum value 10. Its current value is about 6. 
You can change the value of a slider in several ways:

● Place the mouse pointer on the handle, depress the left mouse button, and 
drag the handle to the desired location. Some GUI tools might do 
something (for example, change a plot) as you drag the handle. In other 
cases, nothing happens until you release the handle at the new value.

● Click the middle button at the new value.

● Click the left button away from the handle to increase or decrease the 
value a small amount. Holding the button down makes the handle 
steadily move towards the cursor.

Often a value is displayed with a slider and a variable edit box (for example, 
the leadlag demo). This allows the value to be changed either by dragging the 
slider or entering a new value via the keyboard.

■ Plots, which can accept graphical input from the user, can also appear in GUI 
windows. You can use the left mouse button for graphical input, the middle 
for plot zooming, and the right for plot data value viewing:

● The function of the left mouse button depends upon the particular tool 
and plot. Often a tool allows a curve to be grabbed and dragged by 
depressing the left mouse button with the cursor near the curve, dragging 
the mouse with the button down, and then releasing at a new position.

● Pressing the middle mouse button anywhere in the plot creates a box 
containing a magnification of a small area of the plot centered at the 
cursor. The middle mouse button can be held down and dragged, which 
creates an effect similar to dragging a magnifying glass across the plot. 
The center of the zoomed window corresponds to the tip of the cursor.

Pressing Control with the middle mouse button increases the size of the 
magnified box. Pressing Shift with the middle mouse button increases the 
zoom factor. Pressing Shift and Control with middle mouse button yields a 
large zoom box with a large magnification factor.

● By pointing at or near a curve or object in a plot and pressing the right 
mouse button, a small window appears; it identifies the curve or object 
and gives the coordinates and index of the nearest data value.

If you press and drag the right mouse button, the selected curve is 
tracked, even if another curve comes close.
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Pressing Shift along with the right mouse button allows the user to get 
values on the piecewise line curve that interpolates the data values. In 
this case “index 45.7” means that the selected plot point is between the 
45th and 46th curve index entries.

9.3  GUI Programming Overview

The Programmable GUI allows you to perform the following tasks:

■ Design the layout and appearance of windows.

■ Create, destroy, and manipulate these windows.

■ Bind Xmath variables to various objects in the windows.

■ Arrange for Xmath code to be executed when the user interacts with the 
windows.

These tasks are accomplished as follows:

■ Windows are created, destroyed, and manipulated using a number of Xmath 
functions.

■ Bindings between Xmath variables and sliders, pushbuttons, plotted curves, 
and other objects in the GUI windows are specified by setting the appropriate 
widget attribute. 

■ The execution of particular pieces of Xmath code when the user interacts with 
a GUI window is also specified by setting the appropriate widget attribute. 

These tasks are described in more detail later in this chapter and in the MATRIXX 
online Help.

9.4  Concepts and Terminology

A single GUI application is called a tool. The components that make up a 
complete tool are described in the following section. Usually a user explicitly 
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starts a tool by sending a command (MSC) to Xmath. The MSC calls some Xmath 
functions that tell the GUI to create a new tool, one or more windows, and their 
children widgets. This is what happens when you type guidemo. After the MSC 
creates one or more initial windows, the MSC returns and Xmath is again idle. 
Tools can be launched in other ways. For example, an MSF, script file, or another 
tool can launch new tools. 

Once a tool is created, it is then used as the parent of all subsequent windows 
created. Each window is then in turn used as the parent of each widget in that 
window. In this way a hierarchy of the tool is defined. As it is created, each object 
is given various attributes that define different aspects of appearance and 
behavior, including the binding hooks back to Xmath. The binding of variables to 
various objects on a window is a key feature of the GUI. For example, a variable 
can be bound to a slider in a window. Whenever the user moves the slider, the 
Xmath variable is updated. Similarly, whenever the Xmath variable is updated, 
the slider moves. Variables can also be bound to plotted curves: whenever the 
variable is changed, the plotted curve changes accordingly. With variable binding, 
you don’t have to explicitly update a display; merely changing the value of the 
variable (reassigning it) causes all displays bound to the variable to update 
automatically.

A second key feature of the GUI is the Xmath callback. In itself, updating a 
variable when the user moves a slider isn’t useful. Every time the user interacts 
with a window (that is, moves a slider or selects a pushbutton), you can specify 
certain Xmath code to be executed through an Xmath callback. An Xmath callback 
simply means that the tool’s MSC is called with arguments that describe what the 
user just did. Based on these arguments, the MSC can take whatever action is 
required.

The GUI is event driven. Normally, Xmath is idle. When the user does something 
to a GUI window, variables, if any, are updated, and Xmath callback(s), if any, are 
executed. Once the Xmath callbacks finish (that is, the MSC returns), Xmath is 
again idle, waiting for a new event.

9.4.1  Conceptual Example

A conceptual example can show how these features work together to form a 
simple tool. Suppose we have some Xmath code computey.msc that computes 
some value y given some parameter value x. Our tool arranges for the variable y 
to be bound to a read-only slider and the variable x to be bound to an interactive 
slider. The tool arranges for the Xmath code computey.msc to be executed when 
the interactive slider is released.
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When our tool is invoked, a window containing the sliders appears. When the 
user moves and releases the interactive slider, the variable x is first updated 
(assigned its new value) and then the Xmath code is executed (using the new 
value of x). The Xmath code assigns a new value to the variable y. Since y is bound 
to the read-only slider, the read-only slider changes to reflect the new value of y.

It is interesting to compare the original Xmath code with the tool described above 
from the user ’s point of view. The user interacts with the original code by 
repeatedly typing commands into the Xmath Command window such as x=3.2 
followed by computey followed by y, which prints the new value of y to the 
Xmath log area. Thus, user input and output are via the Xmath command and log 
areas, respectively, and both are alphanumeric in form.

In contrast, the user interacts with the tool described above by simply grabbing 
and moving the interactive slider. After it is released, the new value of y is 
displayed on the read-only slider. Thus, user input and output are via the sliders 
in the tool’s window and graphical in form. In effect, we have implemented a 
completely graphical interface for our original Xmath code computey.msc. In fact, 
once the graphical tool is running, we can iconify all of the standard Xmath 
windows, and someone completely unfamiliar with Xmath can use the code 
computey through the slider and bargraph.

9.4.2  Anatomy of a GUI Tool

It is possible to type commands directly in the Xmath Command window that 
instruct the GUI to create a tool and windows. Usually, however, a GUI tool 
consists of MathScript Command files (MSCs), MathScript Function files (MSFs), 
and a Help file (.hlp):

■ An MSC contains the code for starting the GUI tool and all the code for the 
Xmath callbacks. An Xmath callback simply calls the MSC with particular 
arguments, and the MSC takes the corresponding action based on these 
arguments. If the tool is smaller, the MSC may also contain all the widget 
creation code as well. A large tool can consist of multiple MSCs. Usually 
though all the tool callbacks are in one MSC. The tool’s MSC filename is the 
tool name followed by the extension, .msc.

■ MSFs are often used if the tool is quite large. An MSF can help organize and 
group widget creation code to a particular window or functionality. The MSC 
can call an MSF at the appropriate time to create portions of the tools GUI as 
needed.
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■ A Help file contains one or more Help messages or strings. The tool’s Help 
file is the tool name followed by the extension, .hlp.

These files are described in more detail in the following sections. See the GUI 
demos in $XMATH/demos/gui for examples of each of these files. Each of the 
demos is implemented as an MSC script, possibly an MSF script, and an ASCII file 
that contains the Help message text and global plot options. You can develop and 
debug GUI applications rapidly with Xmath’s interactive environment and 
debugger.

9.4.3  MSC File

The tool’s MSC is declared with three arguments:

command MSC_name {fragname, widgetname, instance}

When an Xmath callback occurs, the MSC is called with two strings (fragname 
and widgetname), and an integer (instance). The string fragname is the name of 
the Xmath code fragment to execute. The string widgetname is the name of the 
widget that caused the callback (usually this will be ignored, unless a single 
Xmath code fragment needs to handle user input into different widgets). Finally, 
the instance number uniquely identifies multiple instances of the same window. 
For example, if two identical windows are instantiated (see the MATRIXX online 
Help uiWindow topic) and the user selects a pushbutton on each window, one 
Xmath callback will have instance = 1, and the other will have instance = 2.

Usually each Xmath code fragment is executed using goto, so each Xmath code 
fragment name is written as a goto label. Also, when the MSC is invoked with no 
arguments, it is often convenient (but not necessary) to arrange that the tool itself 
be launched. Therefore, a template MSC appears as follows:

Command MSC_name {fragName, widgetName, instance}

if (exist(fragName)) 
goto *fragName; 

else # start tool 
[CODE LAUNCH TOOL GOES HERE] 
return; 

endif

<ButtonPressed> #executed when fragname == "ButtonPressed" 
[CODE TO EXECUTE WHEN BUTTON IS PRESSED] 
return;

<SliderMoved> #executed when fragname == "SliderMoved" 
[CODE TO EXECUTE WHEN SLIDER IS MOVED] 
return;
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<DoQuit> # executed when fragname == "DoQuit" 
[CODE TO QUIT TOOL] 
return;

endCommand

9.4.4  Help File

The tool’s Help file is where the tool’s Help messages are stored. Each Help 
message (or Help fragment) is preceded by a name or label. The name is used to 
refer to the particular Help fragment. The order of the Help fragments in the Help 
file is not important. The Help file can be quite large if necessary; fragments are 
read only when needed.

Each Help fragment has the form:

<helpFragName>
This is the Help text that will be displayed.
The Help text can contain many lines. The indent of
the initial line is stripped from all lines.
# comment lines (lines starting with '#') are ignored,
# although an embedded '#' will not be treated
# specially. Use '\#' at the start of a line if
# you need a '#' at the start of a non-comment line.

The Help fragment name helpFragName is any string of your choice. The indent 
of the initial line of the Help fragment will be stripped off all the lines in the Help 
fragment when the Help fragment is displayed. This assists in the legibility of the 
Help file.

One Help fragment can be included inside another with an include directive:

<helpFrag1>
Note that:
!#include <helpFrag1>

That's all folks!

<helpFrag2>
This Help text contains two
lines.

The extra indent of the include line is applied to the entire included fragment, so 
the above is equivalent to:

<helpFrag1>
Note that:

This Help text contains two 
lines.

That's all folks.
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The include facility is useful for grouping Help messages on specific topics into a 
single large overview message. For an example, see the help file for the leadlag 
demo ($XMATH/demos/gui/leadlag.hlp).

The Help fragment name can be followed by an optional title:

<helpFragName> Help Dialog title
 This is the Help text that will be displayed.
The Help text can contain many lines.

Depending on the windowing system you use, the title should be displayed in the 
top border of the Help window.

The Help file is really a database of strings accessed by name. The Help file can be 
used to store strings or string arrays that a tool needs. Long options to the uiPlo( ) 
function, for example, can be placed in the Help file. This feature is shown in the 
binding1 demo ($XMATH/demos/gui/binding1.hlp).

9.5  Xmath GUI Functions

The Xmath GUI functions are categorized as follows:

■ uiToolCreate( )—creates a function for a tool.

■ uiWindow( )—creates a function for a top-level window of a tool.

■ uiPanel( ), uiTab( ), and uiTable( )—create container regions in a window or 
other container.

■ uiMenu( ) and uiMenuItem( )—create menu bars, pulldown menus, popup 
menus, and menu items.

■ uiButton( ), uiComboBox( ), uiList( ), uiSeparator( ), uiSlider( ), uiText( ), 
uiVarChoic( )e, uiVarEdit( ), uiVarView( ), and uiLabel( )—are controls for 
windows and containers for user interaction and displaying data.

■ uiPlotArea( )—creates a special control for displaying two-dimensional 
graphical plots.

■ uiDestroy( ), uiExist( ), and uiHandle( )—are PGUI object operations for 
checking existence, handle/name conversions and generic destruction. 

■ uiHide( ) and uiShow( )—display and hide a PGUI object.
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■ uiGetValue( ) and uiSetValue( )—get or set a PGUI object’s resources. 

■ uiFlush( )—forces the update of the objects displayed.

■ uiTimer( )—invokes an Xmath callback after a given amount of time has 
elapsed.

■ uiPlot( ) and uiPlotGet( )—are commands for generating two-dimensional 
plots in a uiPlotArea and getting user ’s input to the plot.

■ uiFileSelection( ), uiMessage( ), and uiPrompt( )—are predefined dialogs for 
selecting files, displaying messages, and prompting the user for input.

■ uiWindowDeiconify( ) and uiWindowIconify( )—deiconify and iconify a 
window.

■ uiWindowLower( ) and uiWindowRaise( )—lower and raise a window.

For more information on PGUI functions, see the MATRIXX online Help topic 
MathScript Programming, Programmable GUI.

9.6  Tutorial

In this section we discuss two tools: the pushbutton and the calculator examples. 
These tools perform trivial functions; the point is not their purpose but their 
operation.

9.6.1  Pushbutton 

Example 9-1 shows the ex1.msc file, located in the $XMATH/demos/gui directory.

Example 9-1 Pushbutton Creation

command ex1 {fragname, widgetname, instance}

alias T "ex1"

if( exist(fragname) )
goto *fragname;

else
tl = uiToolCreate("ex1");
wn = uiWindow(tl,{name = "win", title = "Tutorial"});
void = uiButton(wn,{
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text = "Press This Button", 
xmath = "ButtonPress"});

main.count = 1; 
void = uiShow(wn);

return;
endif

<ButtonPress>
main.count = main.count + 1; 
display sprintf("Button Press count: %d", main.count);
if(main.count >= 5)

void=uiDestroy("ex1");
endif;
return;

endcommand

When the user types

ex1

The ex1 tool window appears.

Let’s investigate the steps that produced this window. When the user types ex1, 
the MSC ex1.msc is invoked with no arguments. Therefore, the if conditional

if( exist(fragname) )

fails, and the else clause is executed. The statement

tl = uiToolCreate("ex1");

creates the new tool ex1. (If the tool already existed, this step would first destroy 
the tool and all its windows before creating a new tool.) The value returned and 
stored in tl is the tool’s handle. All GUI creation routines return an object handle 
that is used when creating the tool’s windows; the object handle can also be used 
to reference the tool for other GUI functions, such as uiExist( ) and uiDestroy( . In 
addition to the handle, some operations on a tool can also be invoked with the 
tool’s name.

The next statement:

wn = uiWindow(tl,{name = "win", title = "Tutorial"});

actually creates a new window. The keyword arguments provide attribute 
information about a widget, the window in this case. You can provide a widget 
name—win in this case—so that you can reference the widget by its name instead 
of its handle.
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void = uiButton(wn,{text = "Press This Button",
 xmath = "ButtonPress"});

creates a single button as a child of the window. Since no type keyword is 
specified, the default type “button” is created. The text keyword specifies the text 
to appear on the button face and the xmath keyword designates the callback 
fragment to execute when the button is pressed.

At this point, the window is still not visible. The call to uiShow( ) makes the 
window appear when desired. In this case, note that the call to uiShow( ) takes the 
handle returned from the uiWindow( ) call. The call to uiShow( ) could just as well 
appear as follows, which uses the name passed into the uiWindow( ) function.:

uiShow("ex1","PushBWin") 

While handles are slightly more efficient at times, they are less convenient. 
Therefore, both methods are provided.

Finally, the MSC initializes a global variable that is used to count button presses 
and then returns: 

main.count = 1; 
return;

When the user clicks the button, the button checks to see if it has a value for its 
xmath attribute. In this case it is set to “ButtonPress” so the button will invoke the 
tool’s MSC as: 

ex1 "ButtonPress", "Push"

We use the term Xmath callback to describe the calling of the tool’s MSC in this 
way. The first argument is the argument value set as the xmath attribute, the 
second argument is the pushbutton’s name, and the third argument is the 
instance number of the window, which will always be 1 (unless we create 
multiple instances of the same window). Therefore, when the user activates the 
button, it is equivalent to typing:

ex1 "ButtonPress", "Push"

When called with these arguments, the MSC executes the code

main.count = main.count + 1;
display sprintf("Button press count: %d", main.count);
if(main.count >= 5)
 void = uiDestroy("ex1");
endif;
return;
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This increments the count variable and displays a message in Xmath’s log area. If 
the button has been pressed five times, you can see the following messages in the 
log area:

Button press count: 2
Button press count: 3
Button press count: 4
Button press count: 5

Then the tool is destroyed, which causes the window to disappear.

We use a global variable (main.count) so that its value is maintained between calls 
to the tool’s MSC. Local variables in an MSC disappear when the MSC returns. 
You might notice that most GUI tools create their own partitions for storing all 
their global variables.

9.6.2  Calculator

Example 9-2 shows the ex2.msc file, located in the $XMATH/demos/gui directory.

Example 9-2 Calculator 

command ex2 {fragname, widgetname, instance}

alias T "ex2"

if( exist(fragname) )
goto *fragname;

else
tl=uiToolCreate("ex2")
wn=uiWindow(tl,{name = "win", title="Tutorial"});
tb=uiTable(wn,{columns = 2});
void = uiLabel(tb,{text = "Operand 1"});
void = uiSlider(tb,{varname = "op1",

xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm",
min = -1, max = 1})

void =uiVarChoice(tb,{text="Operation",
xmath="NewOperation",
varname= "operation", flags = "H",
items=["plus", "minus", "times"],
values=[1,2,3]});

void = uiLabel(tb,{text="Operand 2"})
void = uiSlider(tb,{varname = "op2",

xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm",
min = -1, max = 1})

void = uiSeparator(tb,{colspan = 2});
void = uiLabel(tb,{text="Result"})
void = uiSlider(tb,{varname = "result",
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xmath="NewOperand",
xmathdrag="NewOperand", flags = "bhdms",
readonly, min = -2, max = 2})

void = uiSeparator(tb,{colspan = 2});
void = uiButton(tb,{text = "Quit",

col = 1, xmath = "DoQuit"});
main.op1=0;
main.op2=0;
main.operation=1;
ex2 "NewOperation";
void = uiShow(wn);
return;

endif

<NewOperation>
<NewOperand>

if( main.operation == 1 ) 
main.result = main.op1 + main.op2;

elseif ( main.operation == 2 ) 
main.result = main.op1 - main.op2;

elseif ( main.operation == 3 ) 
main.result = main.op1 * main.op2; 

endif 
return;

<DoQuit>
uiDestroy("ex2");
return;

endcommand

When the user types

ex2

a window showing a selectable operation between two operands appears. This 
window is created using the same steps as the previous tutorial. However, it uses 
a few more widgets, the first of which is the uiTable( ). A table is used for laying 
out a number of other objects in regular rows and columns.

tb = uiTable(wn,{columns=2});

The keyword columns does two things:

■ It sets the number of columns the table will have

■ It specifies that the table will fill rows first

Widgets will be added across the table, one per column.

void = uiLabel(tb,{text = "Operand 1"});

creates a label containing text string, “Operand 1.”
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void = uiSlider(tb,{varname = "op1", xmath="NewOperand",
       xmathdrag="NewOperand", flags = "hdm", min = -1, max = 1})

creates a slider bound to the Xmath variable op1. Each time the user sets the slider 
to a new value, and each time the slider is dragged, the variable op1 is updated 
and the Xmath callback NewOperand is called. (Similarly, if the variable op1 is set 
to a new value, the slider moves to the corresponding position.) The flag hdm 
specifies that the slider is horizontal. The Xmath variable is updated as the user 
drags the slider, and the minimum and maximum of -1 and 1 are enforced (even if 
the Xmath variable is set by the programmer to a value outside this interval).

void    = uiVarChoice(tb,{text="Operation",xmath="NewOperation",
varname = "operation", flags="H", items=["plus", "minus",
         "times"], values=[1,2,3]});

creates two entries in the table:

■ A label containing the text “Operation”

■  A box containing three radio buttons with the choices "plus", "minus", and 
"times" bound to the Xmath variable operation.

When the user selects one of these choices, the values 1, 2, and 3, respectively, 
are assigned to the variable operation. (Similarly, if the variable is set to one of 
these values, the corresponding radio button is set.)

Whenever the user selects a new toggle button, the Xmath callback NewOperation 
is called.

void = uiLabel(tb,{text="Operand 2"})

creates a label containing the text string, “Operand 2.”

void      = uiSlider(tb,{varname = "op2", xmath="NewOperand",
xmathdrag = "NewOperand", flags = "hdm",
            min = -1, max = 1})

creates a slider bound to the Xmath variable op2. This slider is otherwise the same 
as the first.

void = uiSeparator(tb,{colspan = 2});

draws a horizontal line in the row. The colspan = 2 keyword expression causes it 
to occupy both columns in the table.

void = uiLabel(tb,{text="Result"})

creates a label containing the text “Result.”
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void      = uiSlider(tb,{varname = "result", xmath="NewOperand",
xmathdrag = "NewOperand", flags = "bhdms",
            readonly, min = -2, max = 2})

creates a read-only slider bound to the Xmath variable result. The user cannot 
drag this slider because of the readonly keyword, but, whenever the Xmath 
variable result is set to a new value, the slider changes accordingly. The limits of 
this slider are -2 and 2.

When the user sets the Operand 1 slider to a new value, the variable op1 is set to 
the new value, and the Xmath callback NewOperand is called. If the new value is, 
for example, 0.75, these operations are identical to the user typing the statements: 

main.op1 = 0.75;
ex2 "NewOperand", "dontcare",1;

(The actual widgetname argument will be different, but this isn’t relevant to the 
discussion.) 

This callback causes the following Xmath code to be executed:

<NewOperation>
<NewOperand>

if( main.operation == 1 )
main.result = main.op1 + main.op2;

elseif ( main.operation == 2 )
main.result = main.op1 - main.op2;

elseif ( main.operation == 3 )
main.result = main.op1 * main.op2;

endif
return;

Based on the operation, the new result is computed. Since the variable main.result 
is bound to the bottom slider, the new value is automatically displayed when the 
variable is assigned. Similarly, when the user changes the operation, the same 
Xmath code is called to compute the new result.

For additional examples and descriptions, see the MATRIXX online Help.
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9.7  Translating Version 5.X GUI Files to Version 6.X PGUI Files

This section describes the two utilities for translating Version 5.X GUI files to 
Version 6.X PGUI files, instructions on executing these scripts, details on using the 
translator, and some minor limitations.

9.7.1  Overview

Due to the significant changes in the Xmath Programmable GUI (PGUI) syntax in 
MATRIXX Version 6.X, the to60pgui utility has been created to facilitate the 
transition of old graphical tools to the new syntax (see 9.4.2 Anatomy of a GUI Tool, 
p.350). This utility consists of a pair of Perl scripts that convert the resource and 
MSC or MSF files from Version 5.X syntax to the Version 6.X syntax. 

9.7.2  Execution

The easiest way to execute these Perl scripts is to copy them to a working 
directory. Ensure that Perl is in your path and copy the tool to be translated to that 
working directory. Then execute the main script with the following command:

perl to60pgui.pl Mytool mytool.msc

where Mytool is the X resource file used by mytool.msc. A resource file is a 
collection of resource settings that describe the appearance of the windows,

This script modifies the original mytool.msc file (make sure you have a backup) 
and creates a new file named mytool_build.msf from the resource file. You can then 
compare the files and make any needed modifications. After that you should be 
able to run the MSC as before.

The Perl script restopgui.pl converts the X resource file, Mytool, to an MSF file in 
the new format. To run the resource translator restopgui.pl independently, use 
the following syntax:

perl restopgui.pl Mytool

where Mytool is the X resource file.

NOTE:  MSC and MSF files are translated in place. Make sure you have a backup.

NOTE:  The tool could also be an MSF in which case you provide the appropriate 
name and extension.
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This script creates a new MSF file with the name mytool_build.msf.

9.7.3  Details

The MSC translator scans through an MSC file and changes any Version 5.X 
GuiFunction( ) to a Version 6.X uiFunction( ) with the exception of GuiShellCreate( ) 
and GuiDialogCreate( ). These functions have no counterpart in the Version 6.X 
PGUI because there is no need to create a shell separately from creating a window. 
However, in the old GUI these calls caused the window and its children to be 
created, so they are not just omitted from the new file. Instead they are changed to 
a call to an MSF file that is generated from the tool’s X resource file. This call to the 
new MSF file has the same result as calling GuiShellCreate( ) or 
GuiDialogCreate( ) in that the window specified and its children are created. 

For example, in our Fourier tool a GuiShellCreate( ) call such as: 

GuiShellCreate("fourier", "MainWin", "Fourier Tool", "fourier tool");

becomes

Fourier_build("fourier", "MAINWIN", "Fourier Tool", "fourier tool");

Notice that the second argument is converted to uppercase because the second 
argument in the fourier_build.msf file is used as the fragment label. The third and 
fourth arguments are optional as they are in GuiShellCreate( ). See Limitations.

The resource file conversion results in a new MSF file named 
resourcefile_build.msf. For example, Fourier becomes fourier_build.msf. The 
resource file conversion is the biggest task of the translator. It takes all of the X 
resource specifications and creates a hierarchy of Xmath calls to build the desired 
user interface. The commands in the resulting MSF file are grouped by window 
and indented to show the hierarchy. Fragment labels separate the code associated 
with each window so each window can be created as needed.

9.7.4  Limitations

The PGUI translators have some minor limitations because some features are not 
supported by PGUI or X resource settings need human intervention to be 
properly assigned. More specifically, X resources set in a global sense, such as a 
Motif class of widget, are not handled. Also, X resources set to affect all children 
of a certain widget are not handled. Examples of these are:

*MyTool*background: red
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and

*MyTool*MainWin*background: redvisible

Specific X resources, such as the following, are not supported:

*MyTool*MyText.marginwidth: 4

In general, anything that can’t automatically be translated is set as a comment 
using uiSetValue. The generic comments appear in the beginning of the MSF file 
and the more specific ones appear after the creation of the widget in question.

Within an MSC, calls to GuiSetValue( ) are not translated if they are of the form

GuiSetValue(T, "resource block");

where resource block is one or more X resource settings to be applied to the 
resource database. For both GuiSetValue( ) and GuiGetValue( ), if the resource 
block is not known, then the command is not translated.

For additional help with any PGUI translation, contact MATRIXXCustomer 
Support as described in Chapter 2 of the MATRIXX Getting Started Guide.
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This appendix introduces X Windows and the Motif window manager. If you are 
not using Motif, much of the Motif material will still be useful to you, as Xmath 
uses Motif

The material in this appendix gives general information that allows an 
inexperienced X Windows or Motif user to use Xmath and X at a novice level. 
However, it is not a replacement for X Windows documentation or 
documentation appropriate to your window manager.

A.1  X Window System

What is X Windows? “The X Window System, commonly referred to as X, is a 
network-based graphics window system that was developed at MIT in 1984.”1

Xmath can be used with any window manager that runs as a layer over X 
Windows. X is largely transparent from Xmath; usually you only notice it while 
logging in or out. 

Your X installation can be very complicated. If you are unfamiliar with X, you 
should consult the documentation or ask your system manager about your 
installation. 

1. Quercia, Valerie & O’Reilly, Tim, The Definitive Guides to the X Window System, Volume 3: X 
Window System User’s Guide (O’Reilly & Associates, Inc., 1988, 1989), p 5. 
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You should know the answers to the following questions:

■ Does your installation have an autostart procedure for X Windows, or must 
you start X Windows manually? 

■ If you start manually, what is the command to initialize X Windows at your 
site? (Usually it is xinit.) 

■ Are X Windows, window manager, and Xmath available locally, or must you 
access them across a network? If you are getting these applications from a 
remote source, what special instructions apply?

A.1.1  Starting X

You should see your system manager to verify the correct way to start X at your 
installation. The normal procedure for starting X is as follows:

1. Log in at the system prompt.

2. Type xinit.

A.1.2  X Terminology

This section defines some general terms this manual uses to direct your 
interaction with Xmath windows and menus. For comprehensive information, 
consult X Windows documentation or man pages.

Software Terms

Creating an environment for Xmath requires several types of software that are 
usually transparent to you. They are mentioned briefly here so that you have a 
point of reference if you see these terms in error messages, default files, etc. 

The lowest-level software is the operating system—currently we assume UNIX. 
On top of that you must have X Windows and a window manager (such as Motif). 

X Windows is a windowing system. A windowing system allows many processes 
to exist simultaneously, each running in a different window. X keeps track of 
input and output data for all windows.

A window manager is a client (an application) that describes how a window looks 
and allows you to manipulate windows (move, resize, stack, etc.). Xmath could be 
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run without a window manager, but there would be no borders, the windows 
couldn’t be moved or resized, and so on.

The final element is the server. In this context, the server communicates X graphics 
instructions to the screen. 

In general, X tells how a window is drawn, a window manager defines its 
appearance and activity, and the server implements these instructions on your 
graphics display. 

Mouse Terms

A list of the mouse conventions is on p.13. Some common mouse instructions are:

click — Press and quickly release a mouse button. If click is used without a button 
designation, MB1 is assumed. For example, “click the root window.”

double–click — Two clicks in quick succession. Double-click without a button 
designation assumes MB1.

drag — Hold down a mouse button while moving the mouse. This action is used 
for movement and resizing. Release the button when the desired result is 
obtained. Drag assumes MB1.

press, push — ““Press” or “push” can be used interchangeably with “click MB1.” 
These terms are often used for buttons. For example, “press the Lock button.”

A.2  Motif Window Manager

As discussed earlier, a window manager allows you to manipulate windows. In 
theory, you should be able to use any window manager that is compatible with 
X11 (see the System Administrator’s Guide for your operating system; this 
documents UNIX window managers under which Xmath has been tested). The 
window manager creates frames and is also responsible for any window 
functions in X Windows and Xmath. The graphics in this manual use standard 
Motif frames. 
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A.2.1  Motif Frame Components

The frame is basic to all windows. Figure A-1 shows an xterm and labels each 
feature in the frame. 

■ The rectangular button shown in Figure A-1 activates the Default Window 
Menu. This button has seven selections to change the window’s appearance 
or position. These are discussed in Default Window Menu.

■ The title area displays the name of the window. Click on this area (not 
including the buttons), then drag to move the window.

■ The title bar is the title area and the buttons.

■ The Minimize button turns the window into an icon (a small manageable 
graphic). To minimize (or iconify) a window, click MB1 on the Minimize button. 
The resulting icon has the same name as the window. To bring the window 
back, click MB1 on the icon.

■ The Maximize button enlarges a window to fill the screen (it is not the opposite 
of Minimize). To maximize a window, click MB1 on the Maximize button. To 
return the window to its former size, click the Maximize button again.

Default Window Menu

To view this menu, click MB1 over the rectangle. You can see the selection box 
move as you run the mouse up and down the menu. Click MB1 to select. If an 
item is not available, it will be grayed out. If you don’t want to make a selection, 
move the mouse off the menu and release the mouse click in a neutral area (the 
root window, for example).

■ Restore returns a minimized or maximized window to its original state. 

Figure A-1 Window Frame

Minimize MaximizeDefault Window Menu Title Area

Title
Bar
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■ Move enables you to position a window anywhere you wish. The cursor will 
attach to the center of the window.

■ Size resizes the window.

■ Minimize reduces a window to an icon.

■ Maximize enlarges a window so that it fills the entire screen.

■ Lower puts the current window in back of any window(s) sharing the same 
space.

■ Close terminates the client. In Xmath it is preferable to use File→Quit for the 
Xmath Commands window or File→Close Window from other Xmath windows, 
rather than closing from the Default Window Menu.

For instructions on making menu selections using keystrokes, see A.2.4 Using 
Menus Without the Mouse, p.371.

Frame Buttons

Minimize

Reduces the window to an icon; double-click or select Restore from the Default 
Window Menu to return it to original size. Has the same effect as Minimize on the 
Default Window Menu.

Maximize

Enlarges the window to fill the entire screen; click the Maximize button again, or 
select Restore from the Default Window Menu to restore it to original size. Has the 
same effect as Maximize on the Default Window Menu.

Window Operations

These operations can be accomplished without using the Default Window Menu. 
Move the pointer over a window’s frame. Notice the changes in the pointer. The 
pointer symbols are shown in Figure A-2. 
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Resize and move require you to drag:

resize — To change the size in one direction, place the cursor over an edge, then 
drag to the desired dimension. To simultaneously change two dimensions, 
place the cursor over a corner, then drag to new size.

move — To move a window, place the cursor in the title area, then drag to the 
desired location.

A window is raised (brought to the front) whenever you click on its Title area. The 
only way to lower a window (send it to the back) is from the Default Window menu.

A.2.2  Mouse Focus and the Pointer

When you move the mouse, the pointer moves on the display. Pointer position 
governs input focus (that is, where keyboard input appears). That is, the pointer 
determines the active window. 

In Motif (and most other window managers) there are two ways to give input 
focus. For simplicity, let’s describe them as point and point-and-click. The point 
method means that input is directed to the window under the pointer. For point-
and-click, you must position the cursor over the target window, and then click 
before you have focus.

Figure A-2 Pointer Symbols

For movement, changes to a fleur.

For menus, points opposite direction from selection arrow.

If a corner is selected, the chosen corner is displayed.

If an edge is selected, the chosen edge is displayed.

A large X is visible when the pointer is over the root window.

The "I-beam" appears when the pointer is over an area that accepts tex

For resize, the pointer changes to a symbol appropriate to the selection
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There are several pointer symbols to become familiar with. The pointer symbol 
changes according to the context, as described in Figure A-2.

Consult your window manager documentation or see your system manager for 
more information.

A.2.3  Copying and Pasting with Motif

You may find it easier to cut and paste available text (such as pathnames, etc.) 
instead of retyping. Your machine’s selecting, copying, and pasting methods are 
valid for both X Windows and Xmath. 

The standard Motif method is:

1. Point to the desired text and drag until everything you want appears in 
reverse video (is highlighted). Avoid highlighting extra characters.

2. Point to the destination and click MB2.

As an alternative to dragging, use one of the following three mouse-click selection 
sequences. To select a word, point anywhere within the desired word and double-
click. To select a line, point anywhere on the line and click three times. To select all 
text in an Xmath window, point and click four times.

These click sequences are often used in the Xmath Commands window to copy text 
from the log area and paste it into the command area.

A.2.4  Using Menus Without the Mouse

The Motif window manager makes it possible to use Xmath menus via the 
keyboard. To make a menu selection you normally place the pointer over the 
menu, drag down MB1, and release when the desired selection is highlighted. If 
you look at the Commands window menu bar, you will see that the first character 
of each pull-down is underlined. 

1. To invoke a menu, make sure the proper window has focus.

Press the Meta key (see Table 1-5, p.15 for equivalents across platforms), 
followed by the character underlined in the menu bar. For example, press Meta-
e to invoke the Edit menu. Note that although the underlined letter is 
capitalized, only lowercase letters will work (this is a Motif limitation). Use 
the up and down arrow keys to travel up and down the available options. Hit 
Return to invoke an option.
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2. Once you are in the menu bar, use the left and right arrow keys to move along 
the menu bar.

3. If a submenu is available, an arrow points to the right at the end of the entry. 
Cursor up or down to the submenu and press the right arrow key to pop up 
the submenu. To go to a top-level menu, keep pressing the left or right arrow 
keys.

4. Press Esc or F10 to dismiss the latest menu.

The above option works with any Xmath window.

A.2.5  Using a Motif File Selection Dialog

Figure A-3 shows a typical dialog that uses the Motif file selection dialog. Most 
dialogs have the same fields, but some actions may not require all fields. The 
instructions below show UNIX file paths. 

1. The first step is usually to make a selection from the Directories (the column on 
the left): either click on a selection and press Filter, or double-click on the 
selection. You may need to use the scroll bars to bring the name in view. 

Alternatively, type in the Filter field to alter the search parameters. However, 
you must have a file specification, even if it is only the wildcard *. To start the 
search, either press Return or push the Filter button at the bottom of the dialog. 

Files meeting the filter criteria are displayed in the Files field. To search for the 
same parameters in another place, double-click on a new entry in the 
Directories field. Note that both columns can be scrolled to view long names.

2. To make a selection from the Files field, either click on an entry and press 
Return, or click on an entry and push OK, or double-click on the file. Note that 
the selected file will be displayed in the Selection field.
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A.3  Changing Resource Parameters

If you want to change Xmath’s appearance (color, etc.), you must be familiar with 
how X Windows works. The way Xmath looks is defined in a resource file, which 
contains hundreds of settings. Xmath looks for a resource file that isolates 
resources that directly affect Xmath (see Table A-1); this file often resides in your 
home directory and is read when X windows is started. (If you are on a network, 
you may not have a copy in your home directory.)   

Figure A-3 Exec File Selection Dialog

Table A-1 Resource File Default Location 

ISI Top Level Resource File

UNIX $ISIHOME $XMATH/etc/Xmath
373



MATRIXX 7.0
Xmath User’s Guide
The $XMATH/etc/Xmath file contains default settings for Xmath that you may 
want to change or override. Do not modify the $XMATH/etc/Xmath file. Instead, 
use a local version in your home directory to specify any changes. Your version 
only needs to contain settings that differ from the defaults. Example 9-3 shows a 
sample Xmath file.

Example 9-3 Sample Xmath File

!A local Xmath file must reside in your home directory. This file 
!changes window sizes and has them appear staggered on the right side
!of the screen:
!----------------------------------------------
! COMMAND WINDOW
*main.geometry:       535x695-5+85
*main*log.rows:            32
*main*command.rows:        7

! GRAPHICS WINDOW
*graphicsW.geometry:  545x450-13+93

! HELP WINDOW
*helpW.geometry:     -21+101
*helpW*text.rows:          40

! DEBUGGER WINDOW
*debuggerW.geometry:  -29+109
*debuggerW*text.rows:      30

Example 9-3 deals with window dimension and placement only, but other 
common changes might be changes to the key bindings or window colors. To 
make your own Xmath file, follow this procedure:

1. Copy Xmath from its default location (see Table A-1) to your home directory.

2. Use a text editor to alter the local Xmath file. 

If you are changing the key bindings to a style other than emacs, the settings 
will be commented out with exclamation marks (!); make sure these are 
removed in your personal file. 

3. After making changes, delete all unchanged portions.

Your changes will be implemented the next time you invoke Xmath. When 
you start Xmath, the Xmath file in the default installation location is read first, 
followed by the Xmath file in your home directory. (This is why duplications 
should be deleted; startup will be slower if they exist.)
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A.3.1  Remapping Your Keyboard

Because the keyboards in use with X workstations vary so much between 
platforms, vendors, and countries, you may at some point wish to change the key 
bindings Xmath uses. 

Changing Key Bindings in X

A machine-specific key code is associated with each key on your keyboard. 
Within the X Window system, you can use keysyms (key symbols) to make this 
machine-specific code produce whatever key-binding code you need. To get the 
complete list of key codes for all the keys on your keyboard, type:

xmodmap -pk

xmodmap gives output similar to that shown in Example 9-4.

 

Example 9-4 Sample KeySym Output

There are 2 KeySyms per KeyCode; KeyCodes range from 8 to 132.

KeyCode KeySym (Keysym) ...
Value Value (Name) ...
: : :
61 0x0051 (Q)
62 0x0057 (W)
63 0x0045 (E)
64 0x0052 (R)
65 0x0054 (T)
66 0x0059 (Y)
67 0x0055 (U)
68 0x0049 (I)
69 0x004f (O)
70 0x0050 (P)
71 0x005b (bracketleft) 0x007b (braceleft)
72 0x005d (bracketright) 0x007d (braceright)
: : :

The KeyCode value in the first column is machine-specific and cannot be 
changed. However, you can change the Keysym value globally (so that the key’s 
function is changed in all applications) or locally. 

For example, some keyboards do not include the []{} characters, which are used 
widely within Xmath. On the SunOS and Solaris platforms, if you want to bind 

UNIX: If xmodmap is not in your path, see your system administrator. 
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the [{ characters to the F1 key and the ]} characters to the F2 key, go to the 
command line and type:

xmodmap -e "keycode 12 = bracketleft braceleft"
xmodmap -e "keycode 13 = bracketright braceright"

This means F1 will type “[” and Shift-F1 will type “{”, etc. Note that you should 
modmap to keys you do not use, rather than to alphanumeric or punctuation 
keys. Also, the key code values may be different on different platforms. For 
example, on the HP platform, F1 is key code 16 and F2 is key code 24. 

These xmodmap settings will be lost when you log out, so if you want them to be 
a standard part of your environment, save the settings to a file and call this file up 
as part of your .login file.

Changing an Xmath Key Binding

To get the list of all key bindings local to Xmath, look at the default Xmath file. 
There you can see that the emacs style keyboard translation settings are the 
default. 

Note that there are two translations: XmTextField.translations and 
*XmText.translations. Text field translations are active in dialog boxes (where all 
input is appended on a single line) such as the Load dialog. Text translations, (the 
longer list) are active in multiline environments such as the commands window 
command area and the debugger edit area. For this reason a key may have 
different assignments. For example, look at the assignments for Key<Home>. In 
the Text field translation it is set to beginning-of-line. In the text translation it is set 
to beginning-of-file.

1. Create a file called Xmath in your home directory (this can be the same file 
discussed in Table A-1, p.373). 

2. Go to the operating system and use xmodmap (p.375) to identify the KeySym 
name for the key you are rebinding.

3. Locate the key binding to assign to the chosen keycode. 

4. To change a binding, put a line of the following form in your personal Xmath 
file:

*defaultBinding:yourKeyBinding:<Key>yourKeySymName

5. Save your Xmath file and restart Xmath to see the change.
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A.3.2  Sizing and Placing Windows

X Windows uses a geometry option to size and place windows. The standard 
geometry string is:

 width × height ± xoffset ± yoffset.

As shown in Example 9-3, there are full geometry strings for the Commands 
window and the Graphics window (dimensions are specified in pixels). You can 
size and place the Graphics window in one step, because it is a single window. 

It takes two steps, however, to do the same for the Commands window, (which 
handles text in three areas). For it, you specify the number of character columns 
(the default is 80), then specify the number of rows of text you want to see in each 
area. Xmath builds a window that reflects your changes. Consequently the width × 
height dimensions are unknown. This means the dimensions shown in the 
example may not necessarily work on your machine, because the true dimension 
of a window is affected by factors Xmath does not control, such as border width 
and shadowing settings specified for your window manager. If the sizes do not 
agree with what X Windows knows, it may use the defaults instead; or you may 
see that the size was changed as you desired, but the window is not in the place 
you want it.

To find out the true window size, restart Xmath with the new settings. When the 
window appears, go to an xterm and type xwininfo.

When you get a crosshairs cursor, click on the window you need to control, and 
make note of the width and height dimensions. 

Note that in the sample on p.374 only the placement dimensions need to be 
supplied for windows other than the Commands window; your window manager, 
may, however, require a full geometry. See your X Window documentation for a 
full description of this process. Edit your Xmath file so that it contains the correct 
dimensions for the windows you want to move. Save your file and restart Xmath. 
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Xmath HP-GL Driver
Xmath supports Hewlett-Packard Graphics Language (HP-GL) hardcopy devices. 
You can choose to either print to a file (that is, save the output in a file), or print to 
a printer. To write an HP-GL file, go to the graphics window and select File→Save 
(to print to a file) or File→Print (to print to an output device), or use the hpgl 
keyword in the HARDCOPY command. 

B.1  Supported Devices

All devices supporting the HP-GL language (for example, HP plotters models 
HP7550A, 7470, 7475, 7580, 7585, and 7586) should be able to plot the .hp file 
created by Xmath. The following plotters have been tested: HP7440A, HP7575, 
and the ENCAD SP2800 plotter.

NOTE:  The HPGL driver does not support hidden surfaces. For 3-dimensional 
plots, you must remove the surfaces by suppressing the face keyword (!face or 
face=0). 
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B.2  Setting the Aspect Ratio

Xmath assumes a paper size of 8.5 by 11 inches on the HP7440A, corresponding to 
a plotting area of 25 by 18.1 cm. The aspect ratio of the hardcopy output might 
change if you use a different plotter or paper size. You can use the Print Scale 
options in the Print dialog to change the aspect ratio of the plot.

B.3  Color Pen Specifications

Xmath expects the following color pens to be in the specified stalls in the pen 
carousel, as indicated in Table B-1. 

Xmath attempts to map plot colors to these eight colors.

Table B-1 Color Pen Specifications 

Pen Number Expected Color Pen Number Expected Color

1 black 5 red 

2 blue 6 magenta

3 green 7 yellow 

4 cyan 8 digitizing sight
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Xmath is a numerical problem-solving application similar to MATLAB™ and 
other numerical software. While many of the constructs for storing and 
manipulating data are similar to MATLAB, you will find that Xmath extends both 
the amount of information stored with a given object and the number of actions a 
command or function can take, depending on the type of data passed. The Xmath 
work environment retains the configurable nature you are accustomed to in 
MATLAB, but syntax changes have been made to make Xmath more consistent, 
intuitive, and flexible.

This appendix describes changed features, explains the motivation for changes, 
and in general helps smooth your transition from MATLAB to Xmath. 
C.1 Syntactic Differences, p.382 describes basic changes in the punctuation and 
syntax used in the software. C.2 Object Differences, p.386 describes objects that 
were represented as vectors or matrices in MATLAB but are represented as full-
fledged data types in Xmath. C.3 Interpretation Differences, p.388 describes 
differences that affect environment settings, data representations, and 
programming issues. C.4 Comparison of Frequently Used Commands, p.398 provides 
a comparison between Xmath and MATLAB of frequently used commands. 
Moreover, tables illustrating equivalent expressions in MATLAB and Xmath 
appear throughout this appendix.
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C.1  Syntactic Differences

This section details Xmath features that have the same functionality as MATLAB 
features, but are invoked in a slightly different way.

C.1.1  Continuation

If a MATLAB function cannot fit onto a single line, it can be split over multiple 
lines with two adjacent periods to signal a continuation. 

In Xmath, a continuation is seldom needed; if an unmatched parenthesis or brace 
exists, or the line ends in a comma, Xmath assumes that the expression will 
continue. Aside from this, the Xmath command area can take a line of nearly 
infinite length (2^31-1). Most users break their instructions for readability rather 
than necessity. Xmath uses an ellipsis (...) when an explicit continuation is 
required. Because strings must be complete on a line, they are the most frequent 
candidates for continuation. Table C-1 shows examples of command continuation 
in MATLAB and Xmath. 

C.1.2  Output Display

In MATLAB, variables are by default displayed to the MATLAB Command window 
as soon as they are created; output is suppressed if a semicolon is placed at the 
end of the expression that generated the variable. 

Xmath’s default display mode behaves similarly. This mode can be explicitly set 
with the command set display on. 

Alternatively, you can specify set display off. In display-off mode, any variable 
created with an expression containing an equality sign is not displayed to the 
Xmath Commands window log area. For example,

A=sin(pi)

Table C-1 Command Continuation Examples 

MATLAB Xmath

plot(1:10,..
'b')
title('An Easy Plot')

plot (1:10, {!grid,
title="An Easy Plot"})

plot(x,
{title="A very"+...
" long string"})
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does not generate any output in the commands window log area if the display is 
Off. If you want to display a value as soon as it is created, place a question mark (?) 
at the end of the expression. If you want to see the value of a previously-created 
variable, type its name; because the name is not an expression (does not contain 
an equality sign), its value is displayed. Table C-2 shows examples of output 
display in MATLAB and Xmath.

 

C.1.3  Matrix Punctuation

Matrices are created and entered in the same basic manner, with one important 
difference: all matrix elements in Xmath must be separated by commas, as shown 
in Table C-3, whereas commas are optional in MATLAB. 

When you specify matrix elements separated only by spaces, it is unclear whether 
the element specification [1 -1] represents two separate numbers or the single 
number 0 (the result of the arithmetic operation 1 - 1 = 0). Because matrix 
elements in Xmath must be explicitly delineated by commas, the value of a given 
element is always clear both to you and to the Xmath interpreter. You still use 
semicolons and new lines to mark the end of a matrix row.

C.1.4  String Punctuation

To avoid confusion with the transpose operator, Xmath uses double quotation 
marks rather than the single quotation marks used in MATLAB. Table C-4 
illustrates. 

Table C-2 Output Display Examples 

MATLAB Xmath   (set display on) Xmath  (set display off) output?

A = SIN(PI); A = sin(pi); A = sin(pi) No

A = SIN(PI) A = sin(pi) A = sin(pi)? Yes

A A A Yes

Table C-3 Matrix Punctuation Examples 

MATLAB Xmath

A = [1 -1 2;-4 3 12]
or 
A = [1,-1,2;-4,3,12]

A = [1,-1,2;-4,3,12]
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The treatment of string variables is discussed in more detail later in this appendix. 

C.1.5  Logical Not

In MATLAB the operator denoting a logical not is a tilde (~); in Xmath it is an 
exclamation point (!). To express an inequality relation in Xmath, use <> (the 
greater-than and less-than signs); in MATLAB ~= (tilde-equality sign) denotes 
inequality. Table C-5 shows the logical not operators for MATLAB and Xmath.

C.1.6  Comments

The single-line comment symbol has been changed from % in MATLAB to # in 
Xmath. Unlike MATLAB, Xmath supports block comments, which are delineated 
with #{ at the beginning and }# at the end. Instead of beginning each line of a 
section of comments with #, you can place the #{ marker at the beginning of the 
first comment line and the }# marker at the end of the last comment line. Table C-6 
shows comment examples for MATLAB and Xmath. 

Table C-4 String Punctuation Examples 

MATLAB Xmath

str = 'This is a string' str = "This is a string"

Table C-5 Logical Not Operators 

MATLAB Xmath

if ~(A > 0)
disp('A is negative')

end

if !(A > 0)
display "A is negative"

endif

A ~= B A <> B

Table C-6 Comment Examples 

MATLAB Xmath

% This is a comment. # This is a comment.

% Should you feel the need 
% to describe what you have 
% written at greater length
% you have to comment each 
% line individually in MATLAB.

#{ This is a block comment. Anything 
inside the markers is interpreted as a 
comment. Most programming languages 
support this construct.}#
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C.1.7  Function Names

Xmath tends to preserve the full names of functions performing a given 
operation. Where the Hessenberg-decomposition and random-value generation 
functions in MATLAB are HESS( ) and RAND( ), respectively, the Xmath 
equivalents are hessenberg( ) and random( ). These names are less cryptic and 
more descriptive to the new user. 

For your convenience, however, Xmath also recognizes a function called using 
only the first four letters of its name, or as many more as needed to specify the 
function uniquely. For example, you can call random( ) as rand( ), but would need 
to use polyn( ) to distinguish polynomial( ) from polyfit( ). 

In addition, you can take advantage of Xmath’s alias command to alias lengthy 
function names or command statements to shorter ones of your choosing. For 
example:

alias sdon set display on

(See C.3.13 Useful Aliases, p.397 for a listing of aliases that you might want to have 
predefined in a startup file.)

C.1.8  RAND, ONES, ZEROS, and EYE

Another syntax change concerns the matrix-building functions RAND( ), ONES( ), 
ZEROS( ), and EYE( ). These functions operate in one of two ways depending on 
the type of input provided. They either create a random, ones, or identity matrix 
of the same size as the input, or a matrix of the dimensions specified in the input. 
This causes some ambiguity when the function argument is a scalar—should the 
output matrix also be a scalar, or should it be a square matrix whose dimensions 
have the same value as the scalar? 

When these functions are used with one argument in Xmath, the output matrix 
always has the same dimensions as the input object. Table C-7 illustrates. 

Table C-7 Examples With RAND 

MATLAB Xmath

RAND(1) random(4) # (a 1x1 matrix) 

RAND(4) random(4,4) # (a 4x4 matrix)

RAND(2,3) random(2,3) # (a 2x3 matrix)
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C.1.9  IF, FOR, and WHILE

In executable files, MathScript functions, commands, the IF...END, FOR...END, 
and WHILE...END loops, and conditional structures have been modified slightly. 
Conditional statements starting with If in Xmath should be closed with endIf, 
rather than END. (Because functions and commands are case-insensitive, any 
capitalization scheme will work with these constructs.) Similarly, Xmath For and 
While loops terminate with endFor and endWhile, making it much easier for a 
user reading MathScript to decipher which ending statements close which loops. 
Table C-8 shows examples of conditional statements in MATLAB and Xmath. 

C.1.10  Pure Imaginary Number

The variable representation of the pure imaginary number (the square root of -1) 
is jay in Xmath, following engineering standards, as opposed to i in MATLAB.

C.2  Object Differences

Several objects that were represented as vectors or matrices in MATLAB are 
represented as full-fledged data types in Xmath. 

Table C-8 Conditional Statement Examples 

MATLAB Xmath

FOR variable=vector DO,
commands;

END

For variable=vector 
commands

endFor

WHILE expression DO,
commands;

END

While expression 
commands

endWhile

IF relation1 THEN,
commands;

ELSEIF relation2 THEN
commands

ELSE,
commands;

END

If relation1 
commands

elseIf relation2 
commands

else
commands

endIf
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C.2.1  Strings

Xmath’s real character strings can be manipulated more easily than strings 
implemented in MATLAB (which are essentially vectors of ASCII values). For 
example, in Xmath you can append one string to another one of any length using 
the + operator. You can also create matrices where elements are all strings of 
differing sizes. (This is, in fact, a handy way to create a table where text entries are 
neatly aligned.) 

C.2.2  Polynomials

In Xmath, polynomial coefficients and roots are stored as one of two types of 
polynomial objects instead of vectors. When you create a polynomial, both the 
roots and the coefficients of that polynomial are stored internally for use in future 
computations for greatest efficiency and accuracy. Table C-10 gives examples of 
polynomial creation in MATLAB and Xmath. 

 

C.2.3  Dynamic Systems

Xmath stores dynamic systems as single objects containing all state-space or 
numerator/denominator information, as well as any sampling rate information. 
In MATLAB you need to keep track of different commands for building different 
types of systems. In Xmath, everything is grouped in the system object. A brief 
comparison of these representations is shown in Table C-11.

Table C-9 String Examples 

MATLAB Xmath

STR='A string' str = "A string"

Table C-10 Polynomial Examples 

MATLAB Xmath

% Creating a polynomial by
% listing its coefficients:
CP = [1 4 4]

# Creating a polynomial by
# listing its coefficients:
cp = makepoly([1,4,4])

% Creating a polynomial by
% listing its roots:
RP = POLY([-2 -2])

# Creating a polynomial by
# listing its roots:
rp = polynomial([-2,-2])
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The system( ), makepoly( ), and polynomial( ) functions are far more flexible, and 
can encompass more information, than their MATLAB equivalents. See the 
MATRIXX online Help for a complete reference on these functions.

C.3  Interpretation Differences

The differences described in this section are by-products of Xmath’s more 
complete user environment. In general, these are conceptual changes that involve 
learning new terms rather than word-for-word syntax changes.

C.3.1  Environment Commands

Xmath has a highly customizable user environment. Many environment settings 
in Xmath replace functionalities that existed as individual commands in 
MATLAB. These include creating session and command diaries, changing display 
format in the commands window, setting random number distribution and 
generator seeds and more. In Xmath, settings are treated as parameters that are 
changed with the SET command; each parameter is a keyword. Help for the SET 
command describes many new capabilities not included in MATLAB. Read the 
MATRIXX online Help to understand the full range of settings available. A setting 
remains in its current mode until it is explicitly changed. To see the status of a 
particular environmental setting, you can use SHOW. For example:

show echo      #(default is off)
set echo on

The settings discussed below map closely to MATLAB capabilities you are 
probably familiar with. 

Table C-11 Dynamic Systems Examples 

MATLAB Xmath

% For statespace systems
sys = ss(A, B, C, D);

% For transfer function
sys = tf(num, dem);

# Creating a system from
# matrices A, B, C, and D:
sys = system(A,B,C,D)

# Same command for transfer fn
sys = system(num, dem);
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Creating Diaries

Once a diary file has been created, it collects input from your Xmath or MATLAB 
session until it is closed. The presence or absence of a diary is thus a mode of 
operation. The DIARY( )  function used to start a diary session in MATLAB has 
been replaced with the set sessiondiary and set commanddiary syntax shown in 
Table C-12.

 

Random Seeds and Distribution

The MATLAB RAND( ) function is ambiguous because it returns an output like a 
standard function when called with purely numeric input, but also takes string 
input and uses it to set the distribution mode and initial seed. In these cases there 
is no logical function output. Xmath’s handling of these functionalities through 
the SET command is more consistent, as shown in Table C-13. The Xmath 
random( ) function always returns purely numeric output.

The default seed is 0 and the default distribution is uniform.

Number Formatting

The Xmath equivalent to the MATLAB commands SHORT, SHORT E, LONG, 
LONG E, HEX, BANK, COMPACT, LOOSE and RAT is set format formatname. An 

Table C-12 Creating Diaries 

MATLAB Xmath

% Creating diaries
DIARY 'stamen'
DIARY off
% MATLAB can't
% keep a 
% command diary

# Creating diaries
set sessionDiary="sdname"
remove sessionDiary

set commandDiary = "cdname"
remove commandDiary

Table C-13 Random Seeds and Distribution Examples 

MATLAB Xmath

% Setting random 
% number seed
randn('SEED',100)

# Setting random 
# number seed

set seed 100

% Setting distribution
randn('NORMAL')

# Setting distribution
set distribution normal
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advantage of the Xmath syntax is that it allows a wider range of formatting 
options without the need to add a new command each time! Table C-14 gives an 
example.

The Xmath format names are: compact (the default format), engineering, fixed, 
long, longe, scientific, short, and shorte. Note that the format can also be set 
interactively via the Options→Format menu option in the Commands window.

Note that fixed is slightly different in that you must set two parameters; you must 
specify the format name fixed, and the precision:

set precision 4;set format fixed

The precision is the number of characters allowed. Remember that both settings 
remain the same until you reset them; if you use the above settings and then set 
another format, the precision will still be 4 the next time you SET format to fixed.

C.3.2  User-Defined Functions and Commands

While MATLAB allows you to define optional arguments to a user-defined 
function or command, delineating them with single quotation marks, Xmath 
offers related but much richer ways to extend the user input to a MathScript 
function or command.

In Xmath, optional arguments and keywords are specified following the required 
argument list when the function is declared. 

■ Keywords must be delineated with curly braces {}. They can take any values 
and be specified in any order, but the name of the keyword must always be 
used so that the Xmath interpreter knows which keyword is being sent. If you 
are writing your own function or command using keywords, you should 
provide default values for any keywords where values are not user-supplied. 
(See 3.5.1 Command and Function Calling Syntax, p.85 starting on p.85 for more 
on function syntax.)

■ Optional arguments can be specified by their value or variable name alone, 
and are assigned to the optional variables in the order that they are listed. 

Table C-14 Number Formatting Examples 

MATLAB Xmath

% Set number format
long
% or
format long

# Set number format
set format long
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When a function is called with optional arguments, they are listed directly 
after the required arguments and are not enclosed in curly braces.

In both MATLAB and Xmath, you can define functions and commands that 
override existing functions and commands, including intrinsic ones. In Xmath, 
you can place the function or command in the search path or use the DEFINE 
command to determine which one you want to use (see 6.1.7 Using User-Defined 
MSFs and MSCs, p.230); in MATLAB, a user-defined function has priority over a 
function supplied by MATLAB.

C.3.3  plot( )

In Xmath, plot( ) is a function that returns an output variable (a graphics object, as 
discussed in 4.2 Using the plot( ) Function, p.108). This variable can be 
subsequently replotted to regenerate a plot, kept to form a background or 
template for subsequent plots, and augmented via interactive changes to the 
graphics.    

MATLAB option strings are replaced in Xmath by plot( ) keywords. Referring to 
the online Help will give you a good idea of the scope of plot( ) parameters that 
you can set in Xmath, but Table C-15 illustrates briefly.

C.3.4  Transpose Operators

The transpose operator is interpreted differently in Xmath. MATLAB offers only 
one transpose operator, the apostrophe ('). When used with a complex matrix, the 
transpose operator performs a Hermitian, or complex-conjugate transpose. 

Xmath offers two transpose operators:

■ The Xmath apostrophe operator (') performs a regular transpose, leaving 
complex values untouched. 

■ The Xmath complex-conjugate transpose operator is the asterisk-apostrophe 
(*'). 

For purely real matrices these two transpose operators perform the same function. 

Table C-15 Plot Examples 

MATLAB Xmath

PLOT(1:10, 'b') plot(1:10,{line_color=4}) # or
plot(1:10,{line_color="Blue"})
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Table C-16 illustrates Xmath and MATLAB equivalents.

C.3.5  Convolve

The CONV( ) function, which performs polynomial and vector convolution in 
MATLAB, has been replaced by the convolve( ) function and the * operator in 
Xmath. convolve( ) is equivalent to CONV( ) when used on two vectors or two 
polynomial objects; however, the * operator performs exactly the same operation 
on polynomials as convolve( ) does and is easier to use. 

C.3.6  Series and Parallel

The MATLAB functions SERIES( ) and PARALLEL( ) have been replaced by the 
Xmath operators * and + respectively, when these operators are used with 
dynamic systems. You will find the online Help and Using Operators with Dynamic 
Systems on p.210 useful for a quick but thorough overview of the extended role 
operators play in Xmath.

C.3.7  Simulation

The MATLAB continuous- and discrete-time simulation primitives LSIM and 
DLSIM have been replaced with the system*PDM construct. (The parameter-
dependent matrix [PDM] is a highly useful data type unique to Xmath. It allows 
you to store multiple sets of matrix information (input values) that are dependent 
on a parameter [time]. For a complete explanation of PDMs, see 5.4 Parameter-
Dependent Matrix (PDM), p.187.) This construction finds the system response to 
the input values contained at each point in the PDM. The syntax inherits from 
terminology frequently used in the linear systems field: Y = H*U, where U 
represents system input, H represents the mathematical model of the system’s 
dynamics, and Y is the output of the system. This is a brief description; for more 
information, see 5.5.5 Time Response, p.214.

Table C-16 Transpose Operator Examples 

MATLAB Xmath

A = [1+i 1+2*i; 
3-6*i 2+9*i]

A'

A = [1+jay,1+2*jay; 
3-6*jay,2+9*jay]

A*'

CONJ(A') A'
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Note that where MATLAB generally offers two separate functions for discrete- 
and continuous-time system representations, Xmath only offers one. This is 
because sampling-rate information (which is by default zero, thus describing a 
continuous system) is stored with the system object itself. For example, the Xmath 
function bode( ), which encompasses all the functionality of the MATLAB 
functions BODE( ) and DBODE( ), automatically checks whether your system is 
continuous or discrete and then performs the appropriate operations in either 
case. You can write similarly flexible MathScript functions.

C.3.8  Eval (Executable Strings)

Xmath offers a facility (similar to the MATLAB EVAL( ) function) that allows you 
to create strings containing valid Xmath commands and then execute the contents 
of the strings. It can be used for creating macros or customizing functions. You can 
create strings directly or append them using the + operator, then use Xmath’s 
EXECUTE command. The only constraint is that the string must form a complete 
Xmath statement by itself and be terminated by a semicolon or question mark to 
indicate its end. Table C-17 illustrates. 

As mentioned in C.1.4 String Punctuation, p.383, MATLAB does not allow string 
concatenation. In Xmath, the + operator is overloaded to perform string 
concatenation. In addition, numbers can be converted to strings using the string( ) 
function.

C.3.9  Executable Files

Executable files (often referred to as script files in Xmath) function similar to 
script.m files in MATLAB. A small change is that the names of these files must 
terminate with the extension .ms in Xmath. The syntax to execute files is slightly 
different as well, as shown in Table C-18, for an executable file called testexec.ms 
in Xmath and testexec.m in MATLAB.

Table C-17 Executable String Examples 

MATLAB Xmath

x = pi
s = 'y = sin(x);'
eval(s)

x = pi;
s = "y = sin(x)?"
execute s
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C.3.10  Finding Files

Xmath has the ability to use files that are not in the working directory. It does this 
in a more flexible manner than that employed in MATLAB. In MATLAB, the 
MATLABPATH environment symbol defining the accessible directories is 
generally set up before you start your MATLAB session. The MATLABPATH 
could be changed during a session using the MATLABPATH command, but it had 
to be completely changed at once. In Xmath you can alter the directory search 
path at any time during your Xmath session, and you can add or remove paths 
separately, without having to redefine the entire path each time a modification is 
desired.

SET path is used to specify a list of directories that Xmath will automatically 
search to find MathScript functions and commands (MSFs and MSCs). You can 
use the corresponding REMOVE path command to remove paths you no longer 
want or need.

If you write an MSF in one of the directories in the path, you can call it 
immediately from within Xmath. When you call a function you have written, 
Xmath searches your current directory and all the directories in your path until it 
finds a function file where name matches the function you called. Upon finding 
the file, Xmath compiles it to a low-level operational code and it runs 
immediately. If a function or command file is not in a directory listed as one of 
your path directories, you need to define it explicitly and specify the directory 
where it resides. 

Table C-19 compares these facilities in Xmath and MATLAB (the operating system 
commands shown are for a version of MATLAB running under a UNIX operating 
system).

Table C-18 Executable Filename Examples 

MATLAB Xmath

TESTEXEC execute file="testexec"

Table C-19 Examples of Finding Files 

MATLAB Xmath

!pwd show directory

!cd /home/new set directory = "/home/new"

!echo $MATLABPATH % or
matlabpath

show path
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In MATLAB, the exclamation-point notation (!) can be used to send out an 
operating-system command and display its output. Xmath offers an analogous 
oscmd function, as shown in Table C-20. 

C.3.11  Debugging Files (on UNIX systems)

MATLAB’s debugging facility consists primarily of keyboard commands. Xmath 
provides an interactive debugger for MathScript files. It can be used in either of 
two modes: 

■ The Xmath debugger is automatically invoked when you try to run a function 
containing a syntax error. The offending statement is highlighted. You can fix 
the mistake, save the file, and rerun the function, all from the debugger 
window. 

■ The second debugging mode is useful when you have written a function and 
want to halt execution at some point to examine variable values. To do this, 
type debug functionName in the Xmath Commands window. The debugger will 
then appear when you call the function, allowing you to step through any 
portion of the MSF one statement at the time, or to set breakpoints and jump 
to them. You can use the Commands window to look at local variable values or 
evaluate expressions. 

For more on the debugger window, see 6.4 Using the Xmath Debugger, p.245.

C.3.12  Save and Load

The commands for saving and loading data also differ somewhat. MATLAB offers 
flags that enable you to save data in either a MATLAB-written binary format or a 
short or long ASCII format. Xmath’s SAVE command has a number of keywords 

matlabpath("~me/myfuns") set path = "~me/myfuns"

(no analogous feature) remove path 2

Table C-19 Examples of Finding Files  (Continued)

MATLAB Xmath

Table C-20 Operating System Command Examples 

MATLAB Xmath

!ls -l oscmd("ls -l")
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associated with it to determine what type of format to use to save the data. 
Xmath’s LOAD command can be used to load in data saved by Xmath or 
MATRIXX (FSAVE-format data). Table C-21 compares the commands.

 

In Xmath, as in MATLAB, if a list of variables to be saved or loaded is omitted, all 
variables are saved or loaded. Xmath data files terminate with the suffix .xmd 
(MATLAB uses the .mat suffix). MATLAB always loads all the data stored in a 
.mat file; Xmath can load either all or part of the data stored in a .xmd file.

Xmath’s load command cannot directly load MATLAB data; however, as 
described in Chapter 8, you can create a linked executable (LNX) that can. 
$XMATH/src/matload.c is a sample LNX that loads MATRIXX 3.X format (which is 
similar to older MATLAB formats) into Xmath data objects. This file is 
commented to assist you in making any changes. To make a local copy of 
matload.c in the Xmath log area and create a local copy, go to the command area 
and type:

copyfile "$XMATH/src/matload.c"

Loading In External Data (read)

Loading in data generated by external programs other than Xmath, MATRIXX, 
and MATLAB is also possible. If you have data written to a non-Xmath file by 
another program and you know the size and type of the data in the file, you can 
use the read( ) function to read from the data file into an Xmath matrix variable. 
The input arguments you pass to read( ) describe how large the matrix should be, 
the format of the data in the external file, and how many bytes of data (if any) you 
choose to skip before reading data into the target variable. This allows you to 
create data files that are easily readable by a variety of programs, not necessarily 
just Xmath. This function is described in more detail in the Xmath online Help, 

Table C-21 Save and Load Examples 

MATLAB Xmath

SAVE 'filename' VAR1 VAR2... save var1 var2...
file = "filename" {keyword}
# The keyword is optional and
# may be set for binary, ASCII,
# or MATRIXx formatted saves

LOAD 'filename' load "filename"

No equivalent feature load a b "filename" 
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and the $XMATH/demos directory contains sample files that you can use to test 
read( ).

Writing Data to an External File (print, fprintf)

In addition to the Xmath-formatted SAVE command, Xmath provides two other 
functions that are useful for writing data to external files: print( ) and fprintf( ).   

print( ) writes any Xmath data object to an external file you specify. The data is 
written exactly as it appears when displayed in the Commands window log area. 

fprintf( ) converts scalar numeric values to a string representation, then writes 
them to the file you specify. A wide range of format specifiers (identical to the 
ones used for the C-language fprintf( ) function) can be used to specify field 
width, zero-padding, tabs, and new lines, among other formatting options. 

C.3.13  Useful Aliases

You may want to define the following aliases in a startup.ms file so that you can 
use familiar names for the following Xmath commands. Some examples follow. 

The MATLAB function names lyap( ) and conv( ) invoke their Xmath counterparts 
lyapunov( ) and convolve( ), but the Xmath functions have a different set or order 
of inputs. Along these lines, Xmath has both a rootlocus( ) and rlocus( ) function. 
rlocus( ) is the one analogous to MATLAB rootlocus( ). To create an alias enter the 
following:

Xmath versions do not necessarily take exactly the same inputs in exactly the 
same order as their MATLAB namesakes. When in doubt, refer to the Xmath 
online Help.

You are, of course, not limited to these aliases. Xmath commands and functions 
tend to be as descriptive as possible without being excessively long. As you 
acquire expertise with Xmath, you will probably want to alias other frequently 

alias clear delete

alias ss2tf numden

alias tf2ss abcd

alias rlocus rootlocus
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used commands as well. To obtain a list of all the aliases currently set up in an 
Xmath session, just type alias on a line by itself in the command area.

Note that aliases can cause some problems; for example, if you have clear defined 
as an alias for delete, you will not be able to use clear as a keyword in a function. 
We recommend that you use aliases to speed your transition from MATLAB to 
Xmath, and then learn the Xmath syntax as you go along. 

C.4  Comparison of Frequently Used Commands

Table C-22 summarizes some of the most frequently used Xmath and 
corresponding MATLAB commands. Both Xmath and MATLAB commands are 
case insensitive.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands 

Xmath Command 
or Operator

MATLAB Command 
or Operator

Description

cond(A) cond(A) Finds the condition number.

convolve or * conv Performs polynomial and vector 
convolution. 

cos(x) cos(x) Calculates the trigonometric cos 
function.

bode bode or dbode The Xmath function bode checks 
whether your system is continuous or 
discrete and then performs the 
appropriate operation.

det(A) det(A) Finds the determinant.

eig(A) eig(A) Computes eigenvalues and 
eigenvectors for real and complex 
square matrices.

execute eval Xmath and MATLAB versions 
perform similar functions (see 
3.9 MathScript Batch Files, p.97).
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execute file file.m Executable files are similar (see 
3.9 MathScript Batch Files, p.97). 

NOTE: In MATLAB, execution of a 
script can be done directly 
from the script’s name. In 
Xmath, execution must be 
done with the execute( ) 
function. (This prevents 
ambiguous code or 
accidental execution.)

exp(x) exp(x) Computes the exponent of (x).

NOTE: For matrix exponentiation, 
MATLAB requires the format 
expm(A).

eye(A) eye(A) Generates the identity matrix.

GuiPlotGet ginput Get the current pointer selection and 
coordinates.

hessenberg hess Converts a matrix to Hessenberg 
form.

hilbert(n) hilb(n) Creates a Hilbert ill-conditioned 
matrix.

hilberttransform No MATLAB 
equivalent

{Apparently this command is 
available but not documented.}

inv(A) inv(A) Finds the inverse matrix.

load load Xmath and MATLAB versions 
perform similar functions (see 
3.7 Saving and Loading Data, p.88).

log(x) log(x) Computes natural logarithm.

makepoly No corresponding 
command

Create a polynomial from its 
coefficients. MATLAB reformats 
polynomials by using the 
corresponding vector with its 
coefficients.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands  (Continued)

Xmath Command 
or Operator

MATLAB Command 
or Operator

Description
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norm norm Calculates the norm of a vector, 
matrix, or PDM (Xmath only).

No corresponding 
command?

null The NULL(A) command in MATLAB 
calculates an orthonormal basis for 
the null space of A.

ones ones Xmath and MATLAB have some 
minor syntactical differences (see 
MATRIXX online Help).

ortho orth Used as ortho(A) to give the 
orthonormal basis for A.

pinv pinv Used as pinv(A) to give the 
pseudoinverse for A.

plot(0:10) plot(0:10) The basic plot command is the same, 
but the keyword syntax is different.

polyfit polyfit Both commands fit a polynomial, but 
the Xmath command uses a PDM as 
input. (PDMs are not supported in 
MATLAB.)

polynomial poly Create a polynomial from its roots.

polyval polyval Evaluates a polynomial.

No corresponding 
command

quad8
quad -dblquad

Estimates an integral numerically.

random rand Generates random numbers or 
matrices.

residue(sys) residue(b,a) Expands a partial fraction.

roots(p) roots(p) Returns the roots of a polynomial.

round round Round matrix values to the nearest 
integer.

rref rref Transforms a matrix into reduced 
echelon form.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands  (Continued)

Xmath Command 
or Operator

MATLAB Command 
or Operator

Description
400



C

C
Xmath for MATLAB Users
save save Xmath and MATLAB versions 
perform similar functions (see 
3.7 Saving and Loading Data, p.88).

schur schur Calculates the Schur factorization.

set format name format name

short, short e, long, 
long e, hex, bank, 
compact, loose, rat

Xmath format names are compact 
(the default), engineering, fixed, 
long, longe, scientific, short, and 
shorte.

set seed num rand('seed', num) Setting the random number seed. For 
MATLAB 5, rand('State), j) gives the 
jth state. rand('State', s) makes the 
actual state equal to s (state = s). 

sin(x) sin(x) Calculates the trigonometric sin( ) 
function.

sqrt(x) sqrt(x) Calculates the square root of x.

zeros zeros Generates a matrix of zeros.

./,.*, ... ./,.*, ... Point preceding operator means 
elementwise operation.

' and *' .' and ' Transpose operators. The operators on 
the left (' and .') are for regular 
transpose and The operators on the 
right are for complex-conjugate 
transpose.

+ parallel The overloaded Xmath + operator 
performs the same function as the 
MATLAB parallel( ) function.

* series The overloaded Xmath * operator 
performs the same function as the 
MATLAB series( ) function.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands  (Continued)

Xmath Command 
or Operator

MATLAB Command 
or Operator

Description
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# ... # 
or
#
#
.
.
.
# 

% Indicates a comment. MATRIXX 
supports block comments that span 
multiple lines. The second # is only 
needed for a multiple-line comment. 

"string" 'string' MATRIXX uses double quotes to avoid 
confusion with the transpose operator.

A <> B A~=B Logical NOT EQUAL operators.

!A ~A Logical NOT operators.

x = A\b x = A\b Computes the least squares 
approximation 
(Ax = b).

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands  (Continued)

Xmath Command 
or Operator

MATLAB Command 
or Operator

Description
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This appendix describes how to set up and use the Xmath to Mathematica 
Interface.

D.1  Overview

Mathematica is a powerful symbolic manipulation program from Wolfram 
Research, Inc. (WRI). It performs operations such as differentiation and 
integration symbolically, achieving exact general solutions to many problems. 
This capability can be coupled with Xmath’s powerful numerical analysis and 
design capabilities, resulting in a very strong joint analysis tool. 

Xmath was developed with an open architecture, which simplifies 
communication with other programs and processes. The interface between Xmath 
and Mathematica is based on Xmath’s LNX (link external) capability and 
Mathematica’s Mathlink facility. When Mathematica is first invoked from Xmath, 
Mathematica’s Mathlink facility establishes a process running Mathematica, and 
maintains a link to that process for all subsequent calls from the same Xmath 
session, allowing Xmath the use of intermediate variables in Mathematica. 
Furthermore, the Mathlink facility allows Mathematica to be invoked on a 
different computer than the Xmath host; this is completely transparent to the user.

When a valid Mathematica command is entered in the Commands window 
command area, a separate Mathematica process computes the answer (commands 
that produce graphics should never be used). The resulting text output that 
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would normally appear in Mathematica is converted to an Xmath string object 
that is displayed in the Commands window log area. If the answer is a numeric 
matrix, it can be passed directly to Xmath. Matrices can also be passed from 
Xmath to Mathematica. All Mathematica warnings and other messages are 
transmitted to Xmath and displayed in the Commands window message area.

For a more detailed explanation of the LNX process, see Chapter 8. The source for 
the Xmath to Mathematica interface can be found in $XMATH/src/mathlink.c.

D.2  Setup

These instructions apply to setting up Xmath, and the Xmath to Mathematica 
interface on an Xmath host. If you encounter problems related to Mathematica 
functionality, contact Wolfram Research, Inc. Their website is http://www.wri.com, 
their e-mail address is support@wolframi.com, and their Technical Support phone 
number in the USA is 217-398-6500.

To use the Xmath to Mathematica interface the following conditions must be met.

■ Mathematica must be installed and accessible to you, the Xmath user. The 
Mathematica version must be 3.0 or higher.

■ Only UNIX versions of Xmath and Mathematica are supported. 

■ Your UNIX execution path must include the path to your Mathematica 
installation directory. For example,

set path = ($path /home/Mathematica/Executables/SPARC)

where the above path points to the Mathematica installation at your site.

Because the Mathematica interface LNX must be linked with the local Mathlink 
libraries on your target system, Integrated Systems cannot deliver an executable 
interface. However, we have provided all of the necessary routines to quickly 
create an executable interface LNX. 

To allow all users access to the Xmath to Mathematica interface, a system 
administrator must perform the steps in D.2.1 Setting Up the Xmath to Mathematica 
Interface for All Users, p.405. Users who do not have system privileges can perform 
the steps in Creating a Local LNX (Single User) to create a local LNX.
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D.2.1  Setting Up the Xmath to Mathematica Interface for All Users

These instructions assume the $ISIHOME environment variable was properly set 
at installation time to the path to the root MATRIXX Product Family installation.

1. Change directory to $ISIHOME/platform/xmath/src.

2. Edit the mma.mk file as follows:

a. Define the XMATH variable to be $(ISIHOME)/platform/xmath. 

b. Replace PATH_TO_libML.a with the path to the Mathlink libraries (for 
example:

 */Mathematica/AddOns/MathLink/DevKits/SPARC/CompilerAddOns

3. To create mmalnx.lnx, run the makefile as follows:

make -f mma.mk

4. Copy mmalnx.lnx to $ISIHOME/platform/xmath/modules/mathematica.

All Xmath users will now be able to use the Xmath to Mathematica interface.

D.2.2  Creating a Local LNX (Single User)

Although it is preferable to have a system administrator set up the Xmath to 
Mathematica interface, a user with no root privileges can set up an LNX for his 
personal use. To use the Mathematica interface without modifying the Xmath 
source directories, the user can copy $ISIHOME/platform/xmath/src/mma.mk and 
mathlink.c to a local directory, and then perform steps 2 and 3 described in 
D.2.1 Setting Up the Xmath to Mathematica Interface for All Users, p.405. However, 
before using the interface, the user must tell Xmath not to look in the modules 
directory for the LNX. To do this type the following Xmath commands in the 
Xmath Commands window command area:

undefine mma
define mma {directory="path_to_lnx"} 

For future usability, these lines can be placed in your personal Xmath startup.ms 
file, along with a set path command that points to the location of your local 
mmalnx.lnx file (so that if you start Xmath from another directory you will still be 
able to use the LNX). For example:

set path="path_to_lnx"
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See 3.9.3 startup.ms (on UNIX systems), p.98 for more on startup.ms, and Search 
Paths on p.231. 

D.3  Syntax

Xmath provides three functions, which perform the following tasks:

1. Send a command to Mathematica (a Mathematica session is started if one 
does not exist):

mma("valid_Mathematica_cmd")

mma is actually an accepted abbreviation for mmaexecute.

2. Transfer a matrix from Xmath to Mathematica:

mmaput("mma_matrix_name", xmath_matrix_name)

3. Transfer a matrix from Mathematica to Xmath:

xmath_matrix_name = mmaget("mma_matrix_name")

Note that you can assign the output of a Mathematica command to a 
Mathematica variable and an Xmath variable in one step:

xmath_var = mmaget("var=Mathematica_numerics_cmd")

4. Close the Mathematica session:

mma("quit")

The lowercase string "quit" causes the LNX to close the Mathematica process. 
However, the LNX stays resident and active. If you issue another 
Mathematica command, the existing LNX will restart Mathematica. When 
you exit Xmath, the LNX will be killed.
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D.3.1  Passing Xmath Data to Mathematica

You can pass scalars, vectors, or matrices from Xmath to Mathematica. These 
forms all qualify as matrix objects in Xmath. 

Mathematica assumes all incoming values are matrices and places them in nested 
Lists. For example, the Xmath matrix [1,2;3,4] is represented as {{1,2},{3,4}} when 
passed to Mathematica, and the Xmath scalar 7.2 is represented as {{7.2}}. 

Xmath vectors should always be passed to Mathematica as row vectors. (If a 
column vector is passed, the resulting nested list will not be as readily useful.) 
After a row vector is passed to Mathematica, it can be extracted from a nested List 
to a single List using x=x[[1]]. Scalars can be extracted from a nested List to a true 
scalar using s=s[[1,1]].

D.3.2  Passing Mathematica Data to Xmath

Lists or nested Lists can be passed to Xmath from Mathematica. The Lists can only 
contain numerical data, never symbolic data. In the case of nested Lists, the 
component List lengths must be equal so that Xmath can convert the List to a 
matrix.

A Mathematica symbolic matrix can be converted to a numerical equivalent using 
the command x=N[x], and the result can then be passed to Xmath. For example,

mma("x = Table[EllipticK[i], {i, 0, 2/3, 1/6}]")
x=mmaget("N[x]")

To pass a scalar to Xmath it must first be placed in a List of length one. This can be 
done using the command a={a}.

D.4  Examples

The following Xmath inputs and Mathematica responses demonstrate how data is 
passed between the applications.

When we ask for the Mathematica version, Xmath receives a string:

mma("$Version")
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ans (a string) = SPARC 3.0 (April 26, 1997)

The following call to Mathematica asks for a numeric result with a precision of 40.

str=mma("N[EulerGamma,40]")

str (a string) = 0.5772156649015328606065120900824024310422 

We can convert this simple string to a number in Xmath and compare the 
displays. First, we set the format to longe, the longest output Xmath can display. 
Then we can convert the string to a scalar with makematrix:

set format longe
s=makem(str)

s (a scalar) = 5.772156649015329e-01

Symbolic output (strings containing superscripts or a mixture of text and 
numbers) can be viewed in the Xmath Commands Window log area, but not used as 
Xmath inputs:

mma("Integrate[x^2 Sin[x]^2,x]")

ans (a string) = 
3 2

4 x  - 6 x Cos[2 x] + 3 Sin[2 x] - 6 x  Sin[2 x]
------------------------------------------------
                       24 

Create a matrix in Xmath and send it to Mathematica:

set format compact
m=[pi,42,0;7,tiny,6;17,huge,.02]

m (a square matrix) =

3.14159    42               0  
7           2.22507e-308    6   
17           1.79769e+308    0.02

mmaput("m",m)

You can use Mathematica functions to manipulate the matrix and pass numeric 
versions of the matrix manipulations back to Xmath:

mRev=mmaget("mRev=N[Reverse[m],9]");
mRot=mmaget("mRot=N[RotateLeft[m,2],9]");
408



D

D
Xmath to Mathematica Interface
Display the matrices (in compact form):

mRev?

17          Inf               0.02
 7            2.22507e-308    6   
 3.14159     42               0 

mRot?

mRot (a square matrix) =

 3.14159     42               0   
17          Inf               0.02
 7            2.22507e-308    6 

For more examples, execute the files $XMATH/demos/mathematica/mma.ms and 
$XMATH/demos/mathematica/elliptic.ms.
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ans 50, 99
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intrinsic 105
MIMO 107
nonresident 332
resident 331
syntax rules 105
using 57
void 248, 249

G
G <MCurrPage `327> 341
general simulation 84
get 115

path 116
getchoice 261
getline 261
goto 258
graph object 130

bind to variable 131, 179
graphical user interface. See GUI
Graphics window 60
graphics window 123, 171

colors 138
grids 150
grip 34
GUI

Help menus 342
objects 345
tools

developing your own 342
using 341

guidemo 88
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H
HARDCOPY 127
hardcopy (graphics) 180
HARDCOPY command 181
Help

messages 346
window 45
xmath

Windows 30
help

xmath 
UNIX 29

hessenberg 200
Hessenberg matrix 200
history. See recall
huge 98

I
icon bar 175
iconify 368
identity matrix 199
if 104, 257, 386
improper transfer function 228
impulse 234
independent parameter 209
index

list 194, 238, 239, 264
operator 288

index 237, 264
indexing

dynamic systems 231
functions 264
matrices 74, 193
PDMs 83

Inf 98
initial 234
initializer function 280
input names, extracting 233
interrupt

Ctrl-Break 30
Ctrl-c 30

intrinsic functions 105

ISIHOME 25

J
Jay 98, 386

K
keep 62
key bindings

changing 43
default 41

keyboard, remapping 375
keywords 106, 131

assigning default values 248
Kronecker product 93

L
label 258
leadlag demo 341
length 235
licenseinfo 32
line

feed 40, 49, 190
styles 140
widths 140

list 345
extended-selection 345
multiple-selection 345
object 84, 238
single-selection 345

list 238
LNX

background
function assignment syntax 276
mode 294, 324

terminating 327
windows client, communicating with 335

building and calling 316
C function format 295, 296
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data type. See data type
debugging with dbx 330, 332
definition 293
FORTRAN 327, 328
function

communicating with Xmath 304
sample 314, 321

functions 303
AllocateList 302
AllocateMatrix 298
AllocateNull 303
AllocateStringMatrix 299
DeleteAny 303
DeleteList 302
DeleteMatrix 298
DeleteNull 303
DeletePDM 302
DeleteString 299
WrapMatrix 298
WrapPDM 302
WrapString 299
WrapStringMatrix 299
XmathIPCgetc 336
XmathIPCgeti 336
XmathIPCgets 336
XmathLoad 312
XmathSave 311, 312

handling aborted 334
include file, required 297
interfacing Xmath with Mathematica 403, 

405–406
limitations on passing variables 292
loading MATLAB data 396
makefile 316
nonresident functions 332
program, sample 294, 325
prototype 295, 296
resident functions 331
speeding execution for MSOs 289
string data type, converting to 299
UCI comparison 293
undefining 320
user function structure 294, 296
USR1 signal handler 330
utility 294

version compatibility 297
load 32, 109, 395
log area 37

clear 38
logical 91
logspaced vector 73, 197
loop 104

for 104, 256
if 104
if 257
while 104, 256, 257

lower triangular matrix 201

M
makecontinuous 233
makefile 316, 319

for an LNX program 316, 319
template 316, 319

makematrix 222, 236
converts strings to numbers 261

makepoly 76, 205
markers 141
Mathematica to Xmath Interface 403
MathScript 85, 89

files 117
batch 117
execute 117
format 246

function. See MSF
object. See MSO
programming 248
punctuation 102
scoping rules 249
search paths 251

MATLAB
data

using LNX to load 396
to Xmath translator

aliases 397
syntax difference 382

matload.c 396
matrix 190

building 72
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brackets 190
commas 190
line feed 190
semicolons 190

concatenation 191
data type 297
diagonal 199
Hessenberg 200
identity 199
indexing 74, 193
operators 191, 192
punctuation 190
square 197
string 71
symmetric 198
Toeplitz 200
triangular 201

MATRIXX
block diagram 343, 344, 346

MATRIXX online Help 24
menu

bar 34
cascade 345
pulldown 345
selection from keyboard 371

message area 44
Meta key 35
MIMO, definition and representation 78
mma 406
mmaget 406
mmaput 406
modal dialog 346
mouse

click 367
double-click 367
drag 367
instructions 367
press, push 367
selecting text

by clicking 41, 371
by dragging 41, 371

move 157
graphic objects 174
window 369, 370

MSC 244

building 246
command declaration 245
example 255
file format (figure) 247
inputs 244
inputs (syntax) 245
scoping rules 249
user-interface functions 260
variable arguments 272

MSF 243, 244
building 246
calling syntax 105
file format (figure) 246
function declaration 244
Help 244
inputs 244
optional block comment 244
scoping rules 249
user-interface functions 260
variable arguments 272

MSO 279
defining 281
index operators 287
initializer function 282
member entities 292
object instantiation 280
operator overloading 285
scoping (nested objects) 283
speeding execution with LNXs 289
type declaration 284

multiple-selection list 345

N
names 218, 233
names, specifying directory pathnames and 

filenames 38
naming rules 90
NaN 98
negation operator (!) 107
new partition 95
nomenclature 23
nonresident 305
null 98
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numden 233

O
ones 385
operators 92

and PDMs 223
indexing 74
matrix 192
precedence 94
with dynamic systems 230
with polynomials 76

optional arguments, assigning default values 248
oscmd 55, 108

expanding path names 116
output

keywords 248
names, extracting 233

P
PARALLEL 392
parallel connection 231
parameter–dependent matrix. See PDM
parentheses 194
partition 95, 97

changing via variables window 100
delete 53, 96
handling 52
lock 101
name 90
new 52
set 52, 114
show 53, 95
size 100
viewing variables 53, 100

partition, definition 51
pasting selected text in Motif 371
path 251

adding (set path) 251
overriding (define) 252
removing (remove path) 251

set 251
specifying 38
viewing (show path) 251

path name
expanding in script files 115

pathnames 115
pause 262
PDM 207

allocate for LNX or UCI 300
channel 214, 225
concatenation 221
convert to matrix 222
creating 210, 211
dimensions 215
domain 209

extracting 218
independent parameter 209
indexing 215, 218

substitution 220
modifying 220
names 209, 218

extracting 218
operators 223
using with functions 225

pdm 210
PDM, definition 81
pdmplot function 127
period 233
permanent variables 98
pi 98
plot 347

and mouse buttons 347
plot 58, 59, 123, 124, 128, 131

complex data 128
copy 145
datestamp 182
drawing tools 176
edit graphics window 181
font sizes 182
icon bar 182
interactive tools 175
keep 145
timestamp 181
toolbar 175
zoom 177
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plot keywords
animate 155
axes 148
axisfix 148
bg_color 158
colors 137
contour 168
defaults 132
edge 159
face 158
face_color 159
face_style 159
fg_color 158
grid 150
hold 161
increments 150
keep 146
keepsubplot 146
labels 135
legend 136, 182
light 160, 181
line 140
marker 141
move 157
polar 169
position 157
projection 156, 181
reset 161, 181
rotate 156
rows and columns 143
scale 156
strip 165
text 152
tic labels 150
tics 149
titles 135
zero lines 148

plot2d function 59, 123, 125
plotting commands 126
plotting functions 123

comparative analysis 125
special purpose 126

plus (+) operator 235, 239, 288
point (verb) 370
polar plot 169

polynomial 76, 205, 387
addition 77
default variable 76
indexing 77
multiplication 76
operators 206

polynomial 76, 205
polyval 77
position 157
power, raise to 93
precision (set format fixed) 114
press 367
print 55, 111
print a graphics file 180
PRINTER 26, 180
proper transfer function 228
pulldown menu 345
punctuation, MathScript 102
push 367

Q
qplot function 127
question mark (?) 113
quit 31

in batch .ms files 120

R
radio button 345
raise to a power 93
random

distribution (set) 114
seed (set seed) 114

random 385, 389
read 112
recall

@ sequences 43
ctrl sequences 42, 43

regular vector 73, 196
remove 115

break 269
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commanddiary 122
path 251
sessiondiary 122
watch 270

resident
function 305, 331
process 305

resize window 369, 370
resizing window 34
restore 368
roots 77
rotate 156

S
sample period, extract with period 233
save

all 37
save 31, 54, 108, 395

PDMs as matrices 223
simulation data 223

save.xmd 31, 109
scalar 201
scale 156
scoping (in scripts) 249
scroll bars 34
search path 251
selecting

object
by clicking 60
by Shift-clicking 60

text
by clicking 371
by dragging 371

semicolon (;) 102, 113, 191
SERIES 392
series connection 231
set 112, 113

autocompile 253
break 113
buffering 113
commanddiary 113, 121
debugonerror 113
directory 28, 108, 113, 115

display 113
echo 38, 114, 118, 121
format 114
logarea 37
partition 52, 114
path 114
path 251
pause 114, 262
seed 114
sessiondiary 114, 122
timestamp 114
uiupdate 115
watch 115

Shift-Enter 51
Shift-Return 51
show 115

break 269
echo 118
logarea 38
partition(s) 95
path 251
path 251
seed 114
watch 269

simulation, general 84
single-selection list 345
SISO, definition and representation 78
slider 347
square matrix 197
start Xmath 22, 28
startup.ms 118, 119
state names, extracting 233
statement 89
state-space system 78, 79, 227, 228

decompose with abcd 233
step 234
string 71, 235, 387

breaking across lines 72
concatenation 235
converting numbers 236
data type 298
executable 117
indexing 237
matrix 235
plus (+) operator 235
420



IX

Index
size of 235
special characters 236

stringex 237
strip plots 165
symmetric matrix 198
sys*u (time domain sim) 228
system 78, 229, 230
system. See dynamic system

T
target directory 108
template.f 328
text 40

entry area 345
tics 149
time response 234
timestamp 114
tiny 98
Toeplitz matrix 200
toolbar 175
transfer function 78, 228

converted to state space before 
decomposition 233

transpose (’) 73, 93
transpose, complex conjugate (*’) 93
triangular matrix 201
tril 201
triu 201

U
UCI 296, 320

building and calling 316
cleanup after termination with -clean 29, 30
functions 303
include file, required 297
LNX comparison 293
start with -call 29, 30, 294, 321
Xmath

computational engine 322
graphics engine 322

XmathExecute 308
XmathGet 309
XmathPanic 335
XmathPut 309
XmathStart 314
XmathStop 314

uiPlot function 59, 123, 124
uiPlotArea function 127
uiPlotGet function 127
unalias 116
unary operator 92, 94
UNDEFINE 253, 320
upper triangular matrix 201
user interface functions 260
user-callable interface. See UCI
USR1 signal handler 330, 335

V
variable 49, 50

comment 97
creating 49
edit box 346
environment, changing 112
find 101
load 101
lock 99, 101
name includes partition name 95
naming 90
permanent 98
print to file (print) 55, 111
save 101
show 53
size 100
temporary (ans) 99
type 100
using wildcards with 97
viewing 53

Variables window 54, 99
vector 195

creating 72
expand with [] 73, 94
logspaced 73, 197
regular 73, 196
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reversing 73
transpose (’) 73, 93

void function
calling 249
declaration 248

W
watchpoint 269
whatis 105, 252
while 104, 256, 257, 386
WHO 325
who 96
wildcard 97

asterisk 97
colon 194
percent 97

window 368
close 369
default window menu 368
frame 368
iconify 368, 369
lower 369
manager 366, 367
maximize 368, 369
minimize 368, 369
move 369, 370
raise 370
resize 369, 370
restore 369
Xmath 34

Commands 35
debugger 265
Graphics 123, 171
resizing 34
Variables 99

working directory 108
WrapMatrix 298
WrapPDM 302
WrapString 299
WrapStringMatrix 299

X
X Windows 366

starting 366
XMATH 25, 373
Xmath

abort (Ctrl-\, UNIX) 30
cut and paste 41
debugger, exiting 333, 334
default key bindings 41
editing text 40
file 374
interrupt

Ctrl-Break 30
Ctrl-c 30

Mathematica interface 403, 405
quitting 31
running across the network 28
starting 28

displaying to a local host 28
from a remote host (-host) 28
with UCI 294, 321

syntax differences from MATLAB 382
tty version 29

xmath command
help

UNIX 29
Windows 30

XMATH_PRINT 26, 118, 119, 180
XMATH_STARTUP 25, 118, 119
XmathError 304, 307
XmathExecute 308
XmathGet 304, 309
xmathlib.h 297
XmathLNX.h 304, 307
XmathLoad 312
XmathMain 293, 303, 304
XmathPanic 335
XmathPut 309
XmathSave 311
XmathStart 304, 314
XmathStop 304, 314
xmodmap 375
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Z
zero lines 148
zeros 385
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