
7.0MATRIXX
X M A T H U S E R ’S G U I D E

®

Copyright 2000 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS, RouterWare,
Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are registered
trademarks or service marks of Wind River Systems, Inc.

BetterState, Doctor Design, Embedded Desktop, Envoy, How Smart Things Think, HTMLWorks,
MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep, SNiFF+, VxDCOM,
VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindNet, Wind River, WindSurf,
and WindView are trademarks or service marks of Wind River Systems, Inc. This is a partial list. For a
complete list of Wind River trademarks and service marks, see the following URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

MATRIXX Xmath User’s Guide, 7.0
Edition 1
7 Nov 00
Part #: 000-0002-009

Contents
1 Introduction .. 21

1.1 Using This Manual ... 22

1.1.1 Document Organization ... 22

1.1.2 Commonly-Used Nomenclature .. 23

1.1.3 Conventions .. 24

1.1.4 Related Publications .. 24

1.1.5 Online Help .. 24

1.2 Environment Variables .. 25

1.2.1 ISIHOME ... 25

1.2.2 XMATH ... 25

1.2.3 XMATH_STARTUP .. 25

1.2.4 XMATH_PRINT ... 26

1.2.5 PRINTER ... 26

1.3 Starting and Stopping Xmath ... 27

1.3.1 Starting Xmath .. 27

Starting Xmath on UNIX Systems ... 27
Starting Xmath on Windows Systems ... 29

1.3.2 Interrupting or Terminating Xmath .. 30
iii

MATRIXX 7.0
Xmath User’s Guide
1.3.3 Exiting Xmath .. 30

1.3.4 Stopping and Restarting Xmath .. 31

1.4 Licensing ... 32

1.5 Using Xmath Windows ... 33

1.5.1 Mouse Conventions .. 33

1.5.2 Scroll Bars ... 34

1.5.3 Resizing Xmath Windows .. 34

1.5.4 Menus .. 34

1.5.5 Meta Key ... 35

1.6 Xmath Commands Window ... 35

1.6.1 Menus .. 37

1.6.2 Log Area .. 37

1.6.3 Command Area .. 38

Specifying Directory Pathnames and Filenames 38
Entering Multiple Lines of Information ... 39
Editing Text by Selecting, Copying, and Pasting 40
Key Bindings Used in Editing Text ... 41
Recalling Previous Commands ... 43

1.6.4 Message Area ... 44

1.7 Help Window ... 45

2 JumpStart: A Tutorial ... 47

2.1 Starting Xmath for the Tutorial .. 48

2.2 Basic Data-Handling .. 48

2.2.1 Creating Variables .. 49

2.2.2 Variables and Partitions .. 51

2.2.3 Viewing Data .. 53

2.2.4 Saving Data ... 53
iv

Contents
Save Command .. 54
Print Command .. 55

2.2.5 Loading Data .. 55

Load Command ... 55
Read Command ... 56

2.2.6 Cleanup ... 56

2.3 Functions and Commands .. 57

2.3.1 Function Syntax .. 57

2.3.2 Command Syntax .. 58

2.4 Graphics ... 58

2.4.1 Plot() .. 59

Keywords .. 59
Graph Objects ... 59

2.4.2 Working in the Xmath Graphics Window 60

2.4.3 Using Plot and Graph Objects .. 61

Using 2D Plotting Capabilities ... 61
Using 3D Plotting Capabilities ... 63

2.4.4 Using Different Plot Types .. 64

Strip Plots .. 65
Polar Plots ... 66
Bar Plots ... 66
Contour Plots .. 67

2.4.5 Displaying Multiple Plots at Once .. 68

2.4.6 Animating Plots ... 69

2.4.7 Finishing the Graphics Tutorial ... 70

2.5 Objects .. 70

2.5.1 Strings .. 71

2.5.2 Matrices and Vectors .. 72

Creating Matrices and Vectors ... 72
Matrix Index Operations ... 74
v

MATRIXX 7.0
Xmath User’s Guide
Using Matrix Functions .. 75

2.5.3 Polynomials .. 76

2.5.4 Dynamic Systems .. 78

Transfer Functions ... 78
State-Space Systems .. 79
Analyzing Dynamic Systems ... 80

2.5.5 Parameter Dependent Matrices ... 81

2.5.6 Lists .. 84

2.6 MathScript ... 85

2.6.1 MathScript Features .. 85

2.6.2 Debugger Window (on UNIX Systems) ... 86

2.7 GUI Tools ... 88

2.8 Conclusion .. 88

3 MathScript Basics .. 89

3.1 MathScript Statements .. 89

3.1.1 Assignments ... 89

3.1.2 Rules for Names ... 90

3.1.3 Expressions ... 90

Logical Expressions ... 91
Logical Expressions with Matrices .. 92

3.1.4 Operators .. 92

Operator Precedence ... 94

3.2 Partitions ... 95

3.2.1 Listing Defined Variables ... 96

Wildcards .. 97

3.2.2 Variable and Partition Comments ... 97

3.2.3 Permanent Variables ... 98
vi

Contents
3.2.4 ans .. 99

3.2.5 Xmath Variables Window ... 99

Fields .. 100
Menus .. 101

3.3 Punctuation ... 102

3.4 Iterative Conditional Statements ... 104

3.5 Using Predefined Functions and Commands .. 105

3.5.1 Command and Function Calling Syntax .. 105

Aliases .. 106
Input Arguments .. 106
Keywords .. 106
Single and Multiple Output Arguments .. 107

3.6 Operating System Interface .. 108

3.6.1 Manipulate and Show Current Directory 108

3.7 Saving and Loading Data .. 108

3.7.1 ASCII Versus Binary Considerations .. 110

3.7.2 Saving Data in Non-Xmath Formats ... 111

print .. 111
fprintf() ... 111

3.7.3 Reading Non-Xmath Data Files into Xmath 112

3.8 MathScript Environment ... 112

3.8.1 Changing Environment Settings .. 112

3.8.2 Expanding Pathnames in MathScript Files 115

3.8.3 Abbreviating Command Names (alias and unalias) 116

3.9 MathScript Batch Files ... 117

3.9.1 Executing a Batch File ... 117

3.9.2 Echoing an Executable File ... 118
vii

MATRIXX 7.0
Xmath User’s Guide
3.9.3 startup.ms (on UNIX systems) .. 118

3.9.4 startup.ms (on Windows Systems) .. 119

3.9.5 I/O Redirection .. 120

3.10 Recording an Xmath Session (Diaries) .. 121

3.10.1 Recording Inputs (Command Diary) .. 121

3.10.2 Recording Inputs and Outputs (Session Diary) 122

4 Graphics ... 123

4.1 Xmath Plotting Functions and Commands .. 123

4.1.1 General Purpose Plotting Functions ... 123

plot() ... 124
uiPlot() .. 124
plot2d() ... 125

4.1.2 Comparative Analysis: plot() versus plot2d() 125

4.1.3 Plotting Commands and Special Purpose Functions: 126

colorind ... 126
ERASE ... 127
HARDCOPY ... 127
pdmplot ... 127
qplot ... 127
uiPlotArea ... 127
uiPlotGet ... 127

4.2 Using the plot() Function ... 128

4.2.1 Plot One Input .. 129

4.2.2 Plot Two Inputs .. 129

4.2.3 Plot Three Inputs ... 129

4.2.4 Color as a Fourth Dimension ... 130

4.2.5 Creating and Displaying a Graph Object 130

4.3 Using Keywords with plot ... 131

4.3.1 Labels and Legend ... 135
viii

Contents
4.3.2 Colors ... 137

4.3.3 Line and Marker Specifications for Data .. 140

4.3.4 Multiple Graphs and Graph Positioning .. 143

4.3.5 Adding New Data to Existing Plots (keep, copy) 145

4.3.6 Axis and Zero Lines ... 148

4.3.7 Tics and Grids ... 149

4.3.8 Free Text and Global Text Settings ... 151

4.3.9 Axis Limits and Logarithmic Scaling .. 153

4.3.10 Animate ... 155

4.3.11 Placement, Scaling, and Rotation .. 156

4.3.12 Background, Edge, and Face Settings ... 158

4.3.13 Lighting Source Settings ... 160

4.3.14 Reusing plot Attributes ... 161

Hold Keyword .. 161
Using an Alias in the Keyword String .. 165

4.3.15 Strip Plots .. 165

4.3.16 Bar Plots ... 167

4.3.17 Contour Plots .. 168

4.3.18 Polar Plots ... 169

4.3.19 Clearing the Xmath Graphics Window ... 171

4.4 Interactive Xmath Graphics Window .. 171

4.4.1 Working Interactively .. 174

4.4.2 Toolbar ... 175

Selection Arrow .. 175
Text Tool ... 175
Drawing Tools .. 176
Zoom In/Zoom Out .. 177
Rotation Tools ... 177

4.4.3 Menus .. 179
ix

MATRIXX 7.0
Xmath User’s Guide
File .. 179
Edit ... 181
View ... 181
Options .. 181
Font (UNIX Only) .. 182
Point (UNIX Only) ... 182
Tools (Windows Only) .. 182
Windows ... 183

4.4.4 Xmath Palette ... 183

5 Data Objects and Operators ... 187

5.1 Data Hierarchy ... 187

5.1.1 Data Object Descriptions .. 189

5.2 Matrix .. 190

5.2.1 Matrix Concatenation ... 191

5.2.2 Matrix Operators ... 191

5.2.3 Matrix Indexing ... 193

Indexing with the Colon Operator (:) ... 194

5.2.4 Vector ... 195

Regular Vector .. 196
Logspaced Vector ... 197

5.2.5 Square Matrix ... 197

Symmetric ... 198
Diagonal() .. 199
Identity .. 199
Toeplitz .. 200
Hessenberg() .. 200
Triangular .. 201
Scalar ... 201

5.3 Polynomial() .. 205

5.3.1 Polynomial Operators ... 206

5.4 Parameter-Dependent Matrix (PDM) ... 207
x

Contents
5.4.1 PDM Organization ... 209

5.4.2 Creating PDMs ... 210

5.4.3 Default PDM Behavior .. 211

5.4.4 PDM Channels ... 214

5.4.5 Indexing to Extract Portions of a PDM .. 215

PDM Dimensions ... 215
Dependent Matrices .. 215
Domain and Name Information .. 218

5.4.6 Modifying PDMs .. 220

Substitution ... 220
Concatenation .. 221
Converting PDMs to Matrices .. 222

5.4.7 Using PDMs with Operators ... 223

5.4.8 Using Functions with PDMs ... 225

5.5 Dynamic System ... 227

5.5.1 State-Space Systems ... 227

5.5.2 Transfer Functions ... 228

5.5.3 Creating Systems .. 229

Using Operators with Dynamic Systems 230
Creating Subsystems by Indexing into Dynamic Systems 231

5.5.4 Functions for Manipulating Dynamic System Objects 233

5.5.5 Time Response .. 234

5.6 Strings .. 235

5.6.1 Converting Strings and Numbers ... 236

5.6.2 Special Characters in Strings .. 236

5.6.3 Manipulating Substrings .. 237

5.7 Lists .. 238

5.8 Index Lists ... 239
xi

MATRIXX 7.0
Xmath User’s Guide
6 MathScript Programming .. 243

6.1 Overview ... 243

6.1.1 Creating a Sample MSF .. 243

6.1.2 Creating a Sample MSC .. 244

6.1.3 General Rules for MathScript Programs .. 246

6.1.4 MathScript File Formats ... 246

6.1.5 MathScript Programming ... 248

Assigning Default Values ... 248
Output Keywords .. 248
Calling Void Functions .. 249
Variable Scoping .. 249

6.1.6 Creating Online Help for User-Defined MSFs and MSCs 249

6.1.7 Using User-Defined MSFs and MSCs ... 250

Search Paths .. 251
Manipulating Search Paths .. 251
DEFINE ... 252
MathScript Program Compilation and Execution (.xf, .xc) 253

6.2 Examples ... 254

6.3 Programming .. 256

6.3.1 Iterative and Conditional Looping Statements 256

For .. 256
While ... 256
If ... 257
Goto and Labels ... 258

6.3.2 Object Query Functions .. 258

exist() .. 258
check() .. 259
is() ... 260

6.3.3 User Interface Functions ... 260

getline() .. 261
getchoice() .. 261
xii

Contents
pause() .. 262
error() .. 263
beep() .. 263

6.3.4 Indexing Functions .. 264

index() ... 264
find() ... 264

6.4 Using the Xmath Debugger .. 265

6.4.1 Debug .. 266

6.4.2 Debug Mode ... 266

6.4.3 Setting, Showing, and Removing Breakpoints 268

6.4.4 Setting and Removing Watchpoints .. 269

6.4.5 Debugger Window Interface .. 270

6.5 Advanced Topics .. 272

6.5.1 Variable Arguments ... 272

argn() ... 272
argv() ... 272
Using argn and argv .. 273

6.5.2 Executing a Function at a Specific Directory 276

6.5.3 Partition and Variable Directory Functions 276

6.5.4 MathScript Command Output and Error Capture 276

6.5.5 Programming for Platform Independence 278

7 MathScript Objects .. 279

7.1 MSO Overview ... 279

7.1.1 Object Instantiation .. 280

7.1.2 MSO File Format .. 280

7.1.3 Using MSOs in Xmath ... 281

7.2 Initializer Function ... 282

7.2.1 Class Variables .. 282
xiii

MATRIXX 7.0
Xmath User’s Guide
7.2.2 Nested Objects ... 283

7.2.3 Type Declaration .. 284

7.3 Operator Overloading ... 285

7.4 Member Functions ... 289

7.4.1 Sample MSO ... 289

7.4.2 Limitations .. 292

8 External Program Interface ... 293

8.1 Overview ... 293

8.1.1 LNX .. 294

8.1.2 UCI Programs ... 296

8.1.3 Compatibility ... 297

8.2 externType Data Types .. 297

8.2.1 Matrix Data Type ... 297

8.2.2 String Data Type .. 298

8.2.3 PDM Data Type .. 299

8.2.4 List Data Type .. 302

8.2.5 Null Data Type ... 303

8.3 LNX and UCI Functions ... 303

8.3.1 XmathMain() (for LNX only) .. 304

8.3.2 XmathCommand() .. 306

8.3.3 XmathDisplay() ... 307

8.3.4 XmathError() ... 307

8.3.5 XmathExecute() ... 308

8.3.6 XmathGet() and XmathPut() .. 308

XmathGet() .. 309
XmathPut() .. 309
xiv

Contents
8.3.7 Example Using XmathGet(), XmathPut(), and XmathExecute() 310

8.3.8 XmathSave() and XmathLoad() ... 311

XmathSave() ... 311
XmathLoad() .. 312
Standard Library Linkage ... 312
Example of XmathSave and XmathLoad .. 312

8.3.9 XmathStart() and XmathStop() .. 314

XmathStart() ... 314
XmathStop() ... 314

8.3.10 Sample LNX Demonstrating Most Functions (myfun) 314

8.4 Building and Calling LNX and UCI .. 316

8.4.1 Building on a UNIX System ... 316

8.4.2 Sample makefile (UNIX) ... 317

8.4.3 Building on a Windows System ... 319

8.4.4 Undefining an LNX ... 320

8.4.5 Using the User-Callable Interface .. 320

8.4.6 Building and Calling a UCI .. 321

8.4.7 LNX Example ... 321

8.4.8 UCI Examples ... 322

8.4.9 Calling an LNX in Background Mode .. 324

8.4.10 Removing an LNX Job ... 327

8.4.11 Building an LNX to Link a FORTRAN Routine 327

Calling FORTRAN from C LNX Files ... 328
Creating FORTRAN LNX Files .. 328

8.5 Debugging ... 330

8.5.1 Debugging an LNX with dbx (on UNIX Systems) 330

8.5.2 Debugging LNXs (on Windows systems) 332

8.5.3 Debugging UCIs (on UNIX systems) .. 333

8.5.4 Debugging UCIs (on Windows systems) 333
xv

MATRIXX 7.0
Xmath User’s Guide
8.6 Advanced Topics .. 334

8.6.1 Handling an Aborted LNX .. 334

8.6.2 Advanced Features and Notes ... 335

8.6.3 Advanced Background LNX Function (IPCWC) 335

9 Graphical User Interface ... 341

9.1 Finding Out About the GUI ... 341

9.1.1 GUI Tool Users ... 342

9.1.2 GUI Developers ... 342

9.1.3 Running the GUI Demos .. 342

9.2 Interacting with a GUI Application .. 344

9.2.1 Creating an Example Dialog .. 344

9.2.2 Controlling GUI Objects ... 345

9.3 GUI Programming Overview ... 348

9.4 Concepts and Terminology ... 348

9.4.1 Conceptual Example ... 349

9.4.2 Anatomy of a GUI Tool ... 350

9.4.3 MSC File .. 351

9.4.4 Help File .. 352

9.5 Xmath GUI Functions .. 353

9.6 Tutorial ... 354

9.6.1 Pushbutton ... 354

9.6.2 Calculator .. 357

9.7 Translating Version 5.X GUI Files to Version 6.X PGUI Files 361

9.7.1 Overview .. 361

9.7.2 Execution .. 361
xvi

Contents
9.7.3 Details .. 362

9.7.4 Limitations .. 362

A X Windows and Motif ... 365

A.1 X Window System .. 365

A.1.1 Starting X ... 366

A.1.2 X Terminology .. 366

A.2 Motif Window Manager .. 367

A.2.1 Motif Frame Components ... 368

Default Window Menu ... 368
Frame Buttons .. 369
Window Operations .. 369

A.2.2 Mouse Focus and the Pointer ... 370

A.2.3 Copying and Pasting with Motif ... 371

A.2.4 Using Menus Without the Mouse .. 371

A.2.5 Using a Motif File Selection Dialog ... 372

A.3 Changing Resource Parameters ... 373

A.3.1 Remapping Your Keyboard .. 375

A.3.2 Sizing and Placing Windows .. 377

B Xmath HP-GL Driver ... 379

B.1 Supported Devices ... 379

B.2 Setting the Aspect Ratio .. 380

B.3 Color Pen Specifications .. 380

C Xmath for MATLAB Users .. 381

C.1 Syntactic Differences .. 382

C.1.1 Continuation ... 382
xvii

MATRIXX 7.0
Xmath User’s Guide
C.1.2 Output Display .. 382

C.1.3 Matrix Punctuation ... 383

C.1.4 String Punctuation ... 383

C.1.5 Logical Not ... 384

C.1.6 Comments ... 384

C.1.7 Function Names ... 385

C.1.8 RAND, ONES, ZEROS, and EYE .. 385

C.1.9 IF, FOR, and WHILE ... 386

C.1.10 Pure Imaginary Number .. 386

C.2 Object Differences .. 386

C.2.1 Strings .. 387

C.2.2 Polynomials .. 387

C.2.3 Dynamic Systems .. 387

C.3 Interpretation Differences ... 388

C.3.1 Environment Commands ... 388

Creating Diaries ... 389
Random Seeds and Distribution ... 389
Number Formatting .. 389

C.3.2 User-Defined Functions and Commands 390

C.3.3 plot() ... 391

C.3.4 Transpose Operators ... 391

C.3.5 Convolve ... 392

C.3.6 Series and Parallel ... 392

C.3.7 Simulation ... 392

C.3.8 Eval (Executable Strings) .. 393

C.3.9 Executable Files .. 393

C.3.10 Finding Files ... 394

C.3.11 Debugging Files (on UNIX systems) .. 395
xviii

Contents
C.3.12 Save and Load .. 395

Loading In External Data (read) .. 396
Writing Data to an External File (print, fprintf) 397

C.3.13 Useful Aliases ... 397

C.4 Comparison of Frequently Used Commands .. 398

D Xmath to Mathematica Interface ... 403

D.1 Overview ... 403

D.2 Setup ... 404

D.2.1 Setting Up the Xmath to Mathematica Interface for All Users ... 405

D.2.2 Creating a Local LNX (Single User) .. 405

D.3 Syntax ... 406

D.3.1 Passing Xmath Data to Mathematica .. 407

D.3.2 Passing Mathematica Data to Xmath .. 407

D.4 Examples .. 407

Index ... 411
xix

MATRIXX 7.0
Xmath User’s Guide
xx

1

Introduction
Xmath® is a mathematical analysis, visualization, and scripting package that is
one of the five main products of the MATRIXX

® product family. Complementing
SystemBuild™, another member of the MATRIXX product family, Xmath serves
not only as an analytical tool, but also as a working environment and
visualization tool for simulation data. Xmath and SystemBuild run concurrently,
which allows you to simultaneously edit SystemBuild models, perform Xmath
analysis or SystemBuild simulations, and display 2D and 3D graphics in
presentation quality.

MathScript, the Xmath programming language, provides unique object-oriented
capabilities that facilitate design analysis. Xmath also offers an interactive
debugger, a programmable graphical user interface (GUI) layer, and an extensive
library of mathematical, system modeling, and analysis functions.

This chapter begins with an outline of the Xmath User’s Guide, and some use notes.
It continues with topics for helping you to get started in Xmath. These basic tasks
are divided into the following topics:

Environment Variables

Starting and Stopping Xmath

Licensing

Using Xmath Windows

Xmath Commands Window

Help Window
21

MATRIXX 7.0
Xmath User’s Guide
To complete the exercises in this chapter, Xmath must be properly installed
according to the System Administrator’s Guide for your operating system and
platform. For details about X Windows and the Motif window manager, see
Appendix A. X Windows and Motif. For more information about Windows
operating systems, see the appropriate System Administrator’s Guide, Windows
Version.

1.1 Using This Manual

This manual discusses Xmath structure and concepts. Chapter 2 is a tutorial.
Chapters 3, 4, and 5 cover basic features for general Xmath use. Chapters 6
through 9 describe more advanced aspects of Xmath’s structure and its
programming abilities. Appendicies A–D contain material that is only of interest
to specific categories of users. A glossary, which includes some general terms as
well as Xmath terms, follows the appendices.

1.1.1 Document Organization

This manual includes the following chapters and appendices:

■ 1. Introduction starts with a outline of the Xmath User’s Guide. It continues with
a discussion of useful environmental variables and licensing issues. It also
tells how to start and exit Xmath, and introduces the Xmath Commands
window and the Xmath Help window.

■ 2. JumpStart: A Tutorial covers Xmath’s basic and intermediate capabilities and
introduces some of Xmath’s more advanced features and concepts.

■ 3. MathScript Basics introduces Xmath’s object-oriented language, MathScript,
and data management in Xmath.

■ 4. Graphics details the plot function, providing a complete listing of all
keywords and many examples. This chapter also describes how to change a
plot’s appearance interactively.

■ 5. Data Objects and Operators discusses the nature and definition of each of
Xmath’s object classes. It gives examples of how to build and use each object.
22

1

1
Introduction
■ 6. MathScript Programming discusses how to create different types of
MathScript files, MathScript Functions (MSFs), and MathScript Commands
(MSCs). This chapter also includes brief descriptions of Xmath-supplied
functions and commands designed to help you program in MathScript.

■ 7. MathScript Objects describes how to define MathScript objects.

■ 8. External Program Interface explains the LNX and User-Callable Interface
(UCI) features. The LNX facility makes it possible to link C, C++, or
FORTRAN subroutines into Xmath. The UCI allows your external programs
to use Xmath for graphics and computation.

■ 9. Graphical User Interface describes Xmath’s programmable graphical user
interface (PGUI).

■ A. X Windows and Motif is included for users who are unfamiliar with the
workstation environment but want to start using Xmath quickly. This
appendix provides a summary of the X and Motif actions used most
frequently in Xmath.

■ B. Xmath HP-GL Driver discusses Xmath’s HP-GL driver and the devices it
supports.

■ C. Xmath for MATLAB Users is designed to help MATLAB users transition to
Xmath. Differences in syntax, behavior, and functionality are discussed.

■ D. Xmath to Mathematica Interface describes how to set up and use the Xmath
to Mathematica Interface.

1.1.2 Commonly-Used Nomenclature

This manual uses the following general nomenclature:

■ Matrix variables are generally denoted with capital letters; vectors are
represented in lowercase.

■ is used to denote a transfer function of a system where s is the Laplace
variable. is used when both continuous and discrete systems are
allowed.

■ is used to denote the frequency response, over some range of
frequencies of a system where s is the Laplace variable. is used to
indicate that the system can be continuous or discrete.

■ A single apostrophe following a matrix variable, for example, , denotes the
transpose of that variable. An asterisk following a matrix variable (for

G s()
G q()

H s()
H q()

x'
23

MATRIXX 7.0
Xmath User’s Guide
example, A*) indicates the complex conjugate, or Hermitian, transpose of that
variable.

1.1.3 Conventions

This publication makes use of the following types of conventions: font, format,
symbol, mouse, and note. These conventions are detailed in Chapter 2 of the
MATRIXX Getting Started Guide.

1.1.4 Related Publications

For a complete list of MATRIXX publications, see Chapter 2 of the MATRIXX
Getting Started Guide. The following documents are particularly useful for topics
covered in this manual:

■ MATRIXX Getting Started Guide

■ Xmath User’s Guide

■ Control Design Module

■ Interactive Control Design Module

■ Interactive System Identification Module, Part 1

■ Interactive System Identification Module, Part 2

■ Model Reduction Module

■ Optimization Module

■ Robust Control Module

■ Xµ Module

1.1.5 Online Help

Xmath function reference information is available in the MATRIXX online Help.
The online Help includes all Xmath functions. Each topic explains a function’s
inputs, outputs, and keywords in detail. See Chapter 2 of the MATRIXX Getting
Started Guide for complete instructions on using the Help feature.
24

1

1
Introduction
1.2 Environment Variables

This section defines several important environment variables.

Xmath defines the ISIHOME and XMATH environment variables. It also
recognizes the other environment variables discussed below. You can define them
in your .cshrc file (UNIX), in your autoexec.bat file (Windows), or in your system
properties (environment) (Windows NT). Alternatively, you can define them in
each session in an Terminal or Command Prompt window.

1.2.1 ISIHOME

ISIHOME is an environment variable representing the installation directory for
MATRIXX. This variable is used in pathnames.

1.2.2 XMATH

XMATH is an environment variable representing the directory in which Xmath is
installed. XMATH is used in pathnames.

1.2.3 XMATH_STARTUP

XMATH_STARTUP is an environment variable you can use to specify a directory
in which the startup MathScript file (startup.ms) is located. When you launch
Xmath, the startup MathScript file (startup.ms) in the specified directory is
executed.

NOTE: The following conventions are used in this manual when referring to
environment variables:

■ When an environment variable appears in a pathname with its appropriate
system dependent environment variable designator ($NAME for UNIX and
%NAME% for Windows), then you can use the environment variable as
shown.

■ When NAME appears without the environment variable designator, then you
must substitute the pathname (value of the variable) in the command.
25

MATRIXX 7.0
Xmath User’s Guide
1.2.4 XMATH_PRINT

XMATH_PRINT is an environment variable that lets you set up a default printer.
When you run Xmath and use the HARDCOPY command, Xmath uses the value
of XMATH_PRINT to send the graphics to the printer.

To define XMATH_PRINT for a SunOS system using the print command lpr and a
printer named hp0, define XMATH_PRINT:

setenv XMATH_PRINT "lpr -Php0"

If you are on an SGI or HP system, set XMATH_PRINT with an entry similar to
the following:

setenv XMATH_PRINT "lp -dhp0 -c"

If you are on a Windows operating system, set XMATH_PRINT with an entry
similar to the following:

set XMATH_PRINT=ISIHOME\xmath\bin\xmprint your_printer

where your_printer is the name of your selected printer.

You can place this command in the autoexec.bat file in the root directory of your C
drive. On Windows NT, you have the alternative of using the System Properties,
Environment tab under the Control Panel to specify the environment variable.

1.2.5 PRINTER

PRINTER is an environment variable that lets you specify a default printer (if
XMATH_PRINT) is not defined.

For example, to define PRINTER on a SunOS system, for a printer named hp0,
define the PRINTER environment variable in your .cshrc file with the following:

setenv PRINTER "hp0"

The next time you run Xmath and use the HARDCOPY command, Xmath will use
the value of PRINTER to send the graphics to the printer.

NOTE: If you specify the XMATH_PRINT environment variable, you do not need
to set the PRINTER environment variable. (Xmath ignores it.)
26

1

1
Introduction
1.3 Starting and Stopping Xmath

This section covers starting and stopping Xmath, as well as terminating Xmath
(abnormally) and quitting and restarting Xmath at the same point in your process.
Major topics include:

■ Starting Xmath

■ Interrupting or Terminating Xmath

■ Exiting Xmath

■ Stopping and Restarting Xmath

1.3.1 Starting Xmath

Starting Xmath is a little different on UNIX and Windows machines, and the
options available are also different. Therefore, we have included sections for each
operating system.

Starting Xmath on UNIX Systems

You can start Xmath from any directory in any Terminal window, either in the
foreground or the background.

Starting Xmath Locally

To start Xmath:

1. Bring up a Terminal window.

A Terminal window allows you to input at the operating system prompt.

NOTE: Wind River recommends the XMATH_PRINT environment variable
because it allows for platform-specific parameters. PRINTER may fail to work on
some systems.
27

MATRIXX 7.0
Xmath User’s Guide
2. Enter the following command:

% xmath

Unless all licenses are in use (see 1.4, p.32), the Xmath Commands window
appears after a few seconds.

Internal messages and warnings from Xmath may be written to the Terminal
window.

Starting Xmath on a Remote X Host

If you want to run Xmath on a remote UNIX host, you can start it from your local
machine or from the remote host itself.

To start Xmath from your local computer, type:

% xmath -host remoteHostName

The remote host must accept a remote shell (rsh). Be aware that when the
operating system stores the name of the current working directory, the name
may not be equivalent to that of the same directory on the remote host. (For
example, /home/user on the local machine versus /net/machine/home/user on
the remote machine.) When there is no verbatim match, Xmath will start in
your home directory on the remote machine.

To confirm your location, go to the Xmath Commands window command area
and type show directory. If necessary, use set directory to change the working
directory from within Xmath.

To start Xmath from the remote host, type:

% xmath -d localHostName:0.0

This command displays the Xmath session on your local machine; you need
to make sure your local machine accepts the display from a remote host.
Consult the documentation on the UNIX operating system command xhost.

Command-Line Options Available on UNIX

Table 1-1 contains a partial list of options; some options might not be available on
your platform.
28

1

1
Introduction

To get help on the xmath command in a Terminal window, type:

xmath -h
or
xmath -help

Starting Xmath on Windows Systems

To start Xmath on a PC, use one of the following methods:

■ Select Start→Programs→MATRIXx xx.x→Xmath

■ Enter the following command from the Command Prompt window:

ISIHOME\bin\xmath

where ISIHOME represents the installation directory for MATRIXX.

Table 1-2 contains a partial list of options; some options might not be
available on your platform.

Table 1-1 Commonly Used Startup Options for UNIX

Switch Action

-tty Start the tty (non-windowing) version. This version is
suitable for command-line calculations. It can also be used
to submit a list of instructions in batch mode (see
3.9 MathScript Batch Files). The tty version has no online
Help or graphics capabilities.

-call name args Runs a user-callable interface (UCI) executable, where name
is the image name and args can be any command line
arguments required by the UCI.

-clean If a UCI has terminated abnormally you can run Xmath
with this switch to clean up orphaned processes. No other
switches are accepted when -clean is specified.
29

MATRIXX 7.0
Xmath User’s Guide

Internal messages and warnings from Xmath may be written to the Command
Prompt window.

To get help on the xmath command in the Command Prompt window, type:

ISIHOME\bin\xmath -h
 or
ISIHOME\bin\xmath -help

where you provide the path for the root installation directory of MATRIXX
(ISIHOME).

1.3.2 Interrupting or Terminating Xmath

To interrupt interactive execution of an Xmath function or command, press Ctrl-C
(on UNIX systems) or Ctrl-Break (on Windows systems) from any Xmath window.

On UNIX systems, if either the windowing version or the tty version is not
responding, terminate your Xmath session by pressing Ctrl-\ (hold down the
Control key and press the backslash key [\]). This key sequence terminates Xmath
properly in unusual circumstances.

1.3.3 Exiting Xmath

From a windowing version of Xmath, use any one of the following methods to
exit Xmath:

Table 1-2 Commonly Used Startup Options for Windows

Switch Action

-call name args Runs a user-callable interface (UCI) executable, where name is
the image name and args can be any command line arguments
required by the UCI.

-clean If a UCI has terminated abnormally you can run Xmath with
this switch to clean up orphaned processes. No other switches
are accepted when -clean is specified.

NOTE: Intrinsic commands (for example, save or load; see 3.5 Using Predefined
Functions and Commands) are noninterruptible. The same is true for window,
dialog, or plot creation.
30

1

1
Introduction
■ Type quit in the Xmath Commands window command area (the only part of the
Xmath Commands window that accepts input).

■ Choose File→Quit from the menu bar.

■ With the cursor over the Xmath Commands window, press Ctrl-q.

■ On UNIX systems, select Close from the X Windows Default Menu in the Xmath
Commands window.

■ On Windows systems, click the X (Close) button in the upper right corner of
the Xmath Commands window, or click the Xmath icon in the upper left corner
of the Xmath Commands window and select Close from the system menu, or
use its keyboard equivalent of ALT F4.

In all cases above, the Quit_popup dialog may appear.

You are given the opportunity to save before exiting. Selecting Save here saves all
current variables to a file named save.xmd in the current working directory. The
session terminates after the file is saved.

If you are using the tty version, type quit. You may see the following warning:

Modified variables that have not been saved exist; quit anyway? (y/n)

Type y (yes) or n (no) as desired. For more information, see 3.7 Saving and Loading
Data.

1.3.4 Stopping and Restarting Xmath

You can quit Xmath at any time. To resume at the same point, type save in the
Xmath Commands window command area before quitting, or select Save in the Quit
dialog. This saves all existing data to a file called save.xmd in the current working
directory.

Figure 1-1 Quit Confirmation Dialog
31

MATRIXX 7.0
Xmath User’s Guide
To resume a session:

1. Restart Xmath from the same directory

2. Type load in the command area.

The default save file save.xmd is loaded.

1.4 Licensing

When Xmath starts, it checks out the Xmath Core license. The license for each
module is checked out when that module is started; for example, the Control
Design Module is checked out when that module is started. If your site has a
floating license or counted node-locked license, you may be unable to check out a
particular module.

If a Core license is available, the Xmath Commands window appears after a few
seconds (see Figure 1-2, p.36 for the UNIX version).

To get license information for your current version:

■ Select Help→On Version from the Help menu on any Xmath window.

A pop-up appears that tells you the version, date, and platform.

■ In the Xmath Commands window command area, type:

licenseinfo

A list of modules for which your site is licensed and their expiration dates
appear in the log area.

For additional information about your Xmath license, see the System
Administrator’s Guide for your operating system.

NOTE: The Save command overwrites any previous save.xmd file in the current
working directory.
32

1

1
Introduction
1.5 Using Xmath Windows

The major Xmath windows are listed in the table below, along with sections in
which you can find information about them. You get to these windows through
the Windows menu on each of the other windows.

This section contains general information that applies to all Xmath windows.

1.5.1 Mouse Conventions

This document assumes you have a 2- or 3-button mouse. From left to right, the
buttons are referred to as MB1, MB2, and MB3. All instructions assume MB1
unless otherwise noted. Table 1-4 lists common mouse instructions.

The following mouse-click combinations are useful for selecting text:

■ To select a word, point anywhere within the desired word and double–click.

■ To select an entire line, point anywhere on the line and triple-click.

Table 1-3 Major Xmath Windows

Xmath Window Section

Commands 1.6

Graphics 4.4

Variables 3.2.5

Palette 4.4.4

Debugger (UNIX only) 2.6.2

Table 1-4 Common Mouse Instructions

Instruction Action

click Press then quickly release MB1.

double-click Rapidly click MB1 twice.

drag Hold down MB1 while moving the mouse; release the
button when the desired result is obtained.
33

MATRIXX 7.0
Xmath User’s Guide
■ To select all text in an Xmath window area, move the cursor into the area and
quadruple-click.

1.5.2 Scroll Bars

Most Xmath windows have horizontal and vertical scroll bars so you can look at
data that extends beyond your window border. As you can see in Figure 1-2, p.36,
scroll bars have a small arrow on each end and a center area with a rectangular
slider.

The size of the slider depends on the amount of data out of view. In Figure 1-2, the
horizontal slider fills the whole area because all data is visible. The slider becomes
smaller as data accumulates. To move the slider, place the mouse pointer over the
slide bar and use MB1 or MB2 to drag in the desired direction. If you click MB1 or
MB2 in the scroll bar and off the slider itself, the slider moves toward the point
you clicked.

1.5.3 Resizing Xmath Windows

Most Xmath windows are divided into several areas. If you make a window
shorter, you may notice that some areas get too small to be useful, or even seem to
disappear. When this happens, vertically resize these subwindows.

On the right side of a window on UNIX systems, you can see a small square
straddling the border between two areas. (See Figure 1-2 for an example.) This is
called a grip or a sash. When you place the pointer over it, the cursor changes to a
cross-hairs symbol (). Drag the grip vertically in the direction you want the area
to grow or shrink. Experiment with a combination of resizing the frame and
resizing the areas.

On Windows versions, you can resize the windows using standard windows
techniques.

1.5.4 Menus

The menu bar features pulldown menus that appear on most Xmath windows,
although not all menus are active in all windows. You can open menus by clicking
on the menu name or dragging down from the menu name.
34

1

1
Introduction
1.5.5 Meta Key

You need to know where the equivalent of the Meta key is on your keyboard if you
plan to use Xmath’s accelerators. Whenever the documentation or one of the
menus refers to Meta, you will need to press the key appropriate to your machine,
as shown in Table 1-5.

1.6 Xmath Commands Window

The Xmath Commands window appears when you start Xmath (see Figure 1-2).
This is your primary interface to Xmath. On UNIX systems, the Xmath Commands
window contains three primary areas: the log area, the command area, and the
message area. Windows systems have only two primary areas: the log area and
the command area; the information that goes to the message area in UNIX goes to
the log area on Windows systems.

Table 1-5 Meta Key

Platform Key or Key Sequence

Sun Key with a diamond symbol (on either side of the space bar)

HP Extend/Char key (to the left of Shift)

IBM Alt

Windows Alt

SGI Alt
35

MATRIXX 7.0
Xmath User’s Guide
You can interact with Xmath with both keyboard and mouse. While the keyboard
is used for input, mouse position dictates the active input area; the mouse is also
used for menu selection, text manipulation, and for displaying shortcut menus
(right-click). (See 1.5.1, p.33 for mouse conventions.)

Figure 1-2 Xmath Commands Window (UNIX view)

X Windows

Type here

Default
Menu

Menu Bar

Log Area

Scroll Bars

Command Area

Message Area

Grip

Grip
36

1

1
Introduction
1.6.1 Menus

The pulldown menus shown in Table 1-6 are active in the Xmath Commands
window.

1.6.2 Log Area

The log area keeps a record of your interactions with Xmath. Both inputs and
outputs are displayed in the log area. Certain actions in the user interface also
cause Xmath to write to this area.

To control the number of lines written to the log area, type

set logarea N

where N is the number of lines; N is also limited by the buffer size, which is
machine dependent. Using this command truncates the current contents to that
number of lines.

To set the lines to the maximum, type

set logarea max

This limit is dependent upon hardware and the operating system resources
available.

To turn writing to the log area off:

set logarea off

Current contents of the log area are discarded. While logging is turned off, the
data is not being buffered, and it is lost. When you are running batch and

Table 1-6 Xmath Menus

Menu Description

File Allows you to execute files, set partitions and directories, load files, save all
variables, and exit Xmath.

Edit Allows you to clear the log area, message area, and command area, as well
as send a command and insert a new line in the command area.

Options Allows you to set the output display precision.

Windows Quickly finds other Xmath windows and brings them to the foreground.

Help Invokes the online Help and provides version information.
37

MATRIXX 7.0
Xmath User’s Guide
simulation jobs in SystemBuild, setting logging off speeds up their execution
slightly.

To turn writing to the log area on:

set logarea on

All subsequent log data is displayed up to the limit; the limit is what you set
previously or the default (maximum).

The command

show logarea

displays both the number of lines (or ALL) and the state of logging: On or Off.

To erase the log area, select Edit→Clear Log Area, or type

erase {logarea}

This action is not reversible, although you still have access to command recall to
retrieve previous entries.

If a file is executed, the file contents are not written to the log area unless set echo
on is specified (the default is off).

1.6.3 Command Area

The command area is the only part of the Xmath Commands window (or any of the
major Xmath windows) that accepts text input, so you can focus anywhere on the
window and type. (If you are not familiar with the term focus, see A.2.2 Mouse
Focus and the Pointer, p.350.)

Pressing Return or Enter causes Xmath to execute everything in the command area.

Specifying Directory Pathnames and Filenames

Within the command area, you often need to specify directory pathnames and
filenames. To do so, you must use valid names. In general, Xmath does not
recognize directory pathnames and filenames that contain spaces. Although such
names are valid in Windows operating systems, Xmath does not recognize them
from the command line; however, if you can select the directory and/or filename
from a Browser or File Selection dialog, Xmath does accept them.
38

1

1
Introduction
Scripts, saving and loading data, printing a file, and changing a directory or path
can each be accomplished via a file selection dialog. On UNIX platforms, Xmath
uses the Motif file-selection dialog for interactive directory and file specification.

Figure 1-3 shows a typical file selection dialog on UNIX. Most dialogs have the
same fields, but some actions may not require all fields.

If you know the full pathname of the directory or file you want, type it in the
Selection field at the bottom, and then press Return or click OK.

Entering Multiple Lines of Information

Entering multiple lines of text works differently on UNIX and Windows systems.
See the following sections for examples.

Figure 1-3 Save Dialog (UNIX version)

NOTE: All of the file interactions described above can also be accomplished from
the command line, provided that the directory pathnames and filenames do not
contain spaces, which are not generally recognized in the Xmath command area.
39

MATRIXX 7.0
Xmath User’s Guide
On UNIX Systems

To enter multiple lines of text, press the Line Feed key or Shift-Return to start a new
line. When you are finished typing, press Return to send all the lines to Xmath.
Whenever the documentation refers to linefeed, you need to press the key(s)
appropriate to your machine, as shown in Table 1-7.

You can achieve the same result by selecting Edit→Insert New Line from the menu
bar. The accelerator for your machine appears to the right of the Insert New Line
menu item.

On Windows Systems

To send a set of multiple lines on Windows:

1. Enter the multiline mode by pressing Shift-Enter.

 You can press Shift-Enter before or after entering the first line.

2. Enter your lines of text, pressing Enter after each.

3. Leave the multiline mode by pressing Shift-Enter.

4. Send all lines to Xmath by pressing Enter.

The Edit menu provides the Send Command that you can use instead of the Enter
key.

Editing Text by Selecting, Copying, and Pasting

The command area is in insert mode. You can use mouse clicks or keyboard
sequences to move the cursor within a line of text.

Table 1-7 Linefeed Key

Platform Key or Key Sequence

Sun Line Feed or Shift-Return

HP Insert Line

IBM Shift-Return

SGI Shift-Return
40

1

1
Introduction
Your operating system’s standard selection, copy, and paste methods are all valid.

The following selection sequences are defined:

■ To select a character (forward or back), hold down the Shift key and press the
right or left arrow key (command area only for UNIX).

■ To select a word, point anywhere in the word and double-click.

■ To select a line, point anywhere on the line and triple-click.

■ To select all text in the window area, click four times (UNIX only).

You can paste text from any Xmath window or other ASCII source into the Xmath
command area.

In UNIX, you can select a previous command from the log area, paste it into the
command area, and re-execute it. The following copy and paste method is
standard, although it may vary slightly with different window managers:

1. Point to the desired text and drag (holding down MB1) until everything you
want appears in reverse video (is highlighted). Avoid highlighting extra
characters.

2. Point to the destination and click MB2.

Key Bindings Used in Editing Text

Key strokes help you perform editing functions for Xmath. Key bindings vary
somewhat depending upon your type of operating system. You can change the
key bindings for UNIX; for Windows, you cannot.

UNIX Default Bindings

The UNIX default bindings are emacs-style, as shown in Table 1-8. On UNIX
systems keyboard types vary, so the default mappings for your particular
keyboard might be slightly different. For example, arrows may map to editing
keys or keypad arrows according to the keyboard.

Table 1-8 UNIX Default Key Bindings

Keystrokes Action

Ctrl-a Beginning of line

Ctrl-b, ← Back one character
41

MATRIXX 7.0
Xmath User’s Guide
Windows Bindings

On Windows, the set of key bindings is more limited but still exists (see Table 1-9).

Ctrl-d Delete next character

Ctrl-e End of line

Ctrl-f, → Forward one character

Ctrl-j New line

Ctrl-k Kill to end of the line

Ctrl-l Redraw display

Ctrl-n Next line

Ctrl-o Put remainder of line on a new line

Ctrl-p Previous line

Ctrl-u Delete to the beginning of the line

Ctrl-w Wipe (delete) selected text

Ctrl-y Yank back a single line of killed text (unkill)

Ctrl-↑ Move up through recorded inputs (command area recall is discussed on
p.43)

Ctrl-↓ Move down through recorded inputs

Backspace Delete previous character

Delete Delete previous character

Home Move cursor to first character of text area

End Move cursor to last character of text area

PgUp Move up one page

PgDn Move down one page

Ins Insert a new line (linefeed)

Table 1-8 UNIX Default Key Bindings (Continued)

Keystrokes Action
42

1

1
Introduction
Changing the Key Bindings (on UNIX systems)

You may prefer UNIX-style or EDT-style bindings. These, along with many other
defaults, are implemented through the file $XMATH/etc/Xmath.

To customize your key bindings, use a text editor to create a file called Xmath in
your home directory. Into this file, copy the desired key binding set from
$XMATH/etc/Xmath. Your Xmath file should contain only those changes that differ
from the defaults. Close and save your file.

The new key bindings become effective the next time you invoke Xmath. (For
more information, see A.3 Changing Resource Parameters.)

Recalling Previous Commands

Xmath has a command area recall feature based on keystrokes, as shown in
Table 1-10.

Table 1-9 Windows Key Bindings

Keystrokes Action

Ctrl-a Beginning of line

Ctrl-d Delete next character

Ctrl-j New line

Ctrl-k Kill to end of the line

Ctrl-↑ Move up through recorded inputs (command area recall is discussed on
p.43)

Ctrl-↓ Move down through recorded inputs

Delete Delete next character

Home Move cursor to first character of text area

End Move cursor to last character of text area
43

MATRIXX 7.0
Xmath User’s Guide
■ Only syntactically correct inputs are recorded.

■ @ commands are not recorded as inputs.

■ Multiline inputs are recorded and recalled as one line.

■ One hundred inputs are recorded; the oldest are automatically discarded to
make room for new inputs.

■ An @ command can only be entered in the Xmath Commands window
command area on a line by itself. It cannot be issued from a MathScript batch
file.

1.6.4 Message Area

The message area displays Xmath error messages and warnings. If an error
occurred when you were typing in the command area, Xmath highlights the
possible source of the error and displays a message in the message area (UNIX) or
the log area (Windows). The input is not accepted until you fix the error.

Table 1-10 Command Area Recall Keystrokes

Keystrokes Action

Ctrl-↑ Moving backwards, print recorded inputs in the command area.

Ctrl-↓ Moving forward, print recorded inputs in the command area.

@@ Execute the last command.

@@:p Print the last input in the command area.

@str Execute the last input starting with str.

@str:p Print the last input starting with str.

@n Execute the nth input.

@:l List all inputs in the log area.

@str:l List all inputs starting with str in the log area.

@ List the last 10 inputs. If @ is issued again (without an intervening Xmath
command) 10 inputs back from that point will be listed.
44

1

1
Introduction
1.7 Help Window

Xmath function reference information is available in the MATRIXX online Help.
The online Help includes all Xmath functions. Each topic explains a function’s
inputs, outputs, and keywords in detail. See Chapter 2 of the MATRIXX Getting
Started Guide for complete instructions on using the Help feature.

You can invoke the MATRIXX online Help as follows:

■ Select Help→Topic from the Xmath Commands window or type help in the
command area of the Xmath Commands window; a listing of available topics
appears in the left pane (see Figure 1-4). Scroll down to see additional entries.

■ Once in the Xmath Help window you can use the Topics Hierarchy (table of
contents) in the left pane to locate topics.

For example, to view a linear algebra function topic (for example, the function
hessenberg()), click the Math, Linear Algebra topic in the left pane, and then
click hessenberg in the right pane.

■ You can also use the Master Index (see Figure 1-4 in the right pane) to locate a
topic or function alphabetically. Using the alphabet at the top of the right
pane, you can link directly to the topics for any given letter.
45

MATRIXX 7.0
Xmath User’s Guide
Figure 1-4 MATRIXX Help Window Topics Hierarchy and Master Index
46

2

JumpStart: A Tutorial
This tutorial introduces basic Xmath features. It highlights some of the ways
Xmath is different from other tools. After getting you started, this chapter
provides the following major topics; the times shown are estimates of how long it
takes to complete each section.

To use the JumpStart you must have a properly installed version of Xmath. You
should also be familiar with the following:

■ Your operating system

■ A text editor

■ On UNIX platforms, your window manager

If you are new to the workstation environment described in this book, see
Appendix A, X Windows and Motif. It will be helpful to new UNIX users
because many UNIX-based window managers share common functionality.
We assume that workstation users have X Windows and a window manager
running before starting this tutorial. The Jumpstart is very basic and you will

Topic Page Time to Complete

Basic Data-Handling 48 15 minutes

Functions and Commands 57 10 minutes

Graphics 58 30 minutes

Objects 70 60 minutes

MathScript 85 15 minutes
47

MATRIXX 7.0
Xmath User’s Guide
be able to complete it even if you are unfamiliar with the workstation
environment.

If you find yourself having difficulties with the most basic elements, such as not
understanding how to use the Xmath Commands window or how to get online
Help, refer back to Chapter 1.

This tutorial contains many cross-references to other parts of the document. It is
not necessary to consult the cross references to complete this tutorial. After
completing the tutorial, you may want to look into some of the advanced features
in Chapters 6 through 9.

2.1 Starting Xmath for the Tutorial

In this section, we want you to create a directory called jumpstart, make that
directory your working directory, and start Xmath. From a Terminal window
(UNIX) or the Command Prompt window (Windows), enter the following
commands:

% mkdir jumpstart
% cd jumpstart

Then start Xmath using one of the methods provided in 1.3.1, p.7.

You may stop or interrupt the tutorial at any point. Remember to save your work
before you quit and to reload it upon startup again (see 1.3.4, p.11 for details.)

2.2 Basic Data-Handling

This portion of the tutorial discusses creating and organizing variables, as well as
saving, deleting, and retrieving them.
48

2

2
JumpStart: A Tutorial
2.2.1 Creating Variables

A variable is named information. To create a variable, you must type into the
Xmath command area. You can assign a name to data:

a=3.14

a (a scalar) = 3.14

and assign the results of expressions or the output of an Xmath function:

b=a+expm([1,2;3,4])

b (a square matrix) =

55.109 77.8766
115.245 167.214

Pressing Return or Enter executes everything in the command area. By default,
your input is displayed in the log area, followed by the output. To suppress
output display, terminate inputs with a semicolon (see p.93 for a way to change
display behavior).

b;

If you input more than one statement on a line, a semicolon or question mark
(which forces output) must be used as a separator. Type:

c=b^a; d=b/a? c=d-a;

d (a square matrix)=

17.5506 24.8015
36.7022 53.2528

The only output displayed is the value of d, but c exists.

When entering multiple lines of text in the command area, use the Line Feed key or
Shift-Return to start a new line, and press Return when you are finished. If your
keyboard doesn’t have a Line Feed key select Edit→Insert New Line from the Xmath
Commands window, or use the key combination appropriate to your platform (see
p.19).

In the following example, press Line Feed after inputting the numbers 3 and 6, and
press Return after the right square bracket:

e=[1,2,3
 4,5,6
 7,8,9]
49

MATRIXX 7.0
Xmath User’s Guide
e (a square matrix) =

 1 2 3
 4 5 6
 7 8 9

If you don’t assign a variable name to a valid statement, Xmath assigns the value
to the temporary variable ans. The following expression uses the permanent
variable jay to create a matrix of complex numbers and assign the matrix to ans:

e*jay;
ans?

ans (a square matrix) =

 j 2 j 3 j
 4 j 5 j 6 j
 7 j 8 j 9 j

ans will be changed the next time a statement output is not assigned to a variable.

To comment an existing variable use the comment command:

comment b "combined an expression and a function"

You must enclose the comment string, like all other strings in Xmath, in double
quotes:

To retrieve the comment, use the commentof() function:

commentof(b)

ans (a string) = combined an expression and a function

Xmath also displays the comment when you view the variable in the Xmath
Variable Manager window, which is discussed in 2.2.3, p.53.

If you make an error, Xmath attempts to highlight the incorrect input. For
example, type:

max(E)

What you typed remains in the command area with the E in reverse video. The
message area displays E undefined in this scope.

Go to the command area and replace the capital E with a lowercase e:

max(e)

ans (a scalar) = 9
50

2

2
JumpStart: A Tutorial
The max() function now finds the largest value in the variable e. For detailed
information on entering and editing text, see Editing Text by Selecting, Copying, and
Pasting on p.20.

Using Command Recall

To print previous inputs to the command area, hold down the Control key and
press the up arrow (Ctrl-↑). For more on command area recall, see p.23.

Sending Multiple Lines of Data at Once

On UNIX, you press Shift-Return after each line until you are ready to send the
entire set of lines to Xmath; then you press Return.

On Windows, pressing Shift-Enter turns on multiline mode. In this mode, pressing
the Enter key adds a new line rather than sending the command line to Xmath.
Pressing Shift-Enter again turns off this mode. Pressing Enter a final time sends the
multiple lines to Xmath for execution.

For example:

sends the multiline for-loop to Xmath at one time.

2.2.2 Variables and Partitions

Xmath variable names are case-sensitive (for example, MyVar, myvar, and MYVAR
are different variables).

A partition is a named non-hierarchical directory that contains variables. Partition
names are also case-sensitive.

UNIX Windows

for i=1:10 Shift-Return Shift-Enter
Enter

i? Shift-Return Enter

endfor Return Shift-Enter
Enter
51

MATRIXX 7.0
Xmath User’s Guide
Xmath always starts in the default partition main. You can verify this by typing
show partition in the command area. The full name of a variable includes its
partition, so the variable a, found in partition main, is named main.a. However,
you don’t need to supply a prefix when handling variables in the current
partition.

Use the command new partition to create partitions. Other commands used for
partition handling are set, show, and delete.

1. Create new partitions:

new partition data1
new partition data2

2. Using variables in the current partition (the default partition main), create
new variables for the partition data1:

data1.a=a\b;
data1.b=lyapunov(b,c);

3. Go to the new partition data1 and display a list of the variables in that
partition to the log area:

set partition data1
who # List variables in the current partition

data1:
a -- 2x2
b -- 2x2

4. Attach a comment to a partition in the same way you comment variables,
except that you must put a period after the partition name to distinguish it
from a variable name:

comment data1. "vault"
commentof(data1.)

ans (a string) = vault

5. Use the same variable name in other partitions:

data2.a=random(4,4);
comment data2.a "a random matrix"
who data2.* # List variables in the named partition

data2:
a -- 4x4

6. Look at all the partitions and all existing variables:
52

2

2
JumpStart: A Tutorial
show partitions # Shows all partitions
who *.* # Show all variables in all partitions

7. Delete a partition (data1).

To delete a partition, you must first empty it:

delete data1.* # Delete variables in data1.

To delete a partition you are in, change to another partition first:

set partition main
delete data1. # Delete the partition data1

2.2.3 Viewing Data

The Xmath Variable Manager window lists all variables in the current partition.
While it is open, Xmath immediately updates it whenever changes occur in the
viewed partition.

1. To invoke the Xmath Variable Manager window, select Windows→Variables from
the Xmath Commands window.

You should be viewing the current partition (main).

2. Click the Partition button in the Xmath Variable Manager window. In the dialog
that appears, select main, and click OK.

This lists the variables in main. Note that you are only viewing the partition;
you have not changed your working partition. (Only the set partition command
issued from the command area will change the partition. Remember, you can
type show partition to see the current partition.)

3. Try the selections on the Variable Manager window View menu to change the
organization of the variables. Try sort by Name, sort by Size, and sort by Type.

4. To close the Variable Manager window, select File→Close Window.

For additional information on the Variable Manager window, see 3.2.5, p.79.

2.2.4 Saving Data

The commands and functions in Table 2-1 save data to files.
53

MATRIXX 7.0
Xmath User’s Guide
You can perform save operations from the command area and from the File menu
of most windows.

Save Command

The easiest save method is to type SAVE in the command area. When you do,
Xmath saves all variables to a file named save.xmd in the current working
directory. By default, SAVE produces a binary file with the variables saved in
Xmath format.

You can specify a list of variables, a filename, or a format. For example,

save main.* file="main" {ascii}

saves all variables in the partition main to an ASCII file named main.xmd in the
current partition. Note that SAVE adds the .xmd extension for you.

To save all variables to a binary data file via the File menu in either the Xmath
Commands window or the Xmath Variable Manager window:

1. From the menu bar, choose File→Save All (UNIX) or File→Save (Windows).

The Save dialog comes into view.

2. Add the filename data1.xmd to the path in the Selection field at the bottom of
the dialog (UNIX), or select a directory and then specify a filename in the File
name field of the Windows’ dialog.

For a complete explanation of this dialog, see Specifying Directory Pathnames
and Filenames on p.18.

3. Click OK or Save.

If you look at the log area, you will see that the text equivalent of your save
action is echoed there (UNIX only). The current message will be similar to:

save file="/YourPath/data1.xmd"

Table 2-1 Save Commands and Functions

SAVE Save variables in Xmath or MATRIXX format to a binary or ASCII file. This
is the standard way of saving data.

PRINT Print the values of a list of variables to an ASCII file.

fprintf() Convert numeric values to a string representation, and then write the
string(s) to an ASCII file.
54

2

2
JumpStart: A Tutorial
Print Command

The print command writes a variable in a text format you can read.

To print a specific variable to a text file:

set seed =0;
x=(rand(2,2))*sin([5,1;4,2]);
print x file="x.dat"

The function oscmd() lets you use an operating system command to display the
contents of the file you created to the Xmath Commands window log area:

oscmd("cat x.dat") # UNIX
oscmd("type x.dat") # Windows

main.x =
-0.77482 0.865292
-0.250204 0.300552

ans (a scalar) = 0

2.2.5 Loading Data

Load Command

If you type load (with no file specified) in the command area, Xmath looks for the
default file save.xmd in the working directory and loads it if it exists.

To test this, go to the command area and input the sequence below; these
instructions assume you are in partition main.

a=1; b=2; c=3; d=4; # Create variables a, b, c, and d

save # Save all variables to save.xmd

who *.* # Verify that the variables are in main

delete *.* # Delete variables in main

who *.* # Verify that the variables have been deleted

You can then retrieve selected variables or all saved data:

load c d "save" # Load variables c and d from save.xmd

-or-
55

MATRIXX 7.0
Xmath User’s Guide
load # Load all variables in save.xmd

who *.* # Verify that the variables have been loaded

Xmath supplies the default filename extension xmd when you don’t supply one.
Another way to load saved data is to go to the commands or Variable Manager
window and select File→Load from the menu bar.

Read Command

The READ command copies the contents of a file into an Xmath matrix. This
function is particularly useful for loading externally generated data into Xmath.
The data can be character, integer, or floating-point types, as well as ASCII.
Consult the MATRIXX online Help READ topic. Note that the arguments are a
filename, the rows and columns of the data, the type (or format), and the number
of bytes in the file you want to skip before reading.

Read in the file you made with the print command (see Print Command on p.55).

■ Specify the input filename (x.dat), give the row and column dimensions of the
data, and specify the input file format (ascii).

■ Specify an offset of 1; this instructs Xmath to skip the first line (main.x =).

We do not have to worry about the last line in the file, (ans (a scalar) = 0),
because read stops after the two rows and columns you specified have been
read.

xx=read("x.dat",2,2,"ascii",1)

xx (a square matrix) =

-0.77482 0.865292
-0.250204 0.300552

2.2.6 Cleanup

This concludes the section on basic data-handling. You can delete the variables
and partitions you created, as you do not need them later. Do not, however, delete
the partition main; delete only its contents.
56

2

2
JumpStart: A Tutorial
2.3 Functions and Commands

If you have been working through the tutorial, you have already used several
common commands and functions. In addition to discussing functions and
commands, this section includes references to more detailed passages.

2.3.1 Function Syntax

Functions operate on a list of input values and return output values. Input
arguments are passed by value (a local copy is nested inside the function scope).

Functions are called in the following form:

[out1,out2,...,outn] = funName(in1,in2,...inm,{options,keywords})

For examples of this syntax, see the MATRIXX online Help Functions topic.

■ Input and output arguments are separated by commas.

■ Keywords are enclosed in braces and separated by commas.

■ When a string is required, it must be enclosed in double quotes; for example,
line_color="blue".

■ If a function has multiple outputs, by default only the first output is returned.
You must use the brackets if you wish to acquire more than one output.

The following example shows two possible syntaxes for residue. Input the
following data to see the default output behavior:

sys=(makepoly([2:4:6])/makepoly([3,5]));
Rp=Residue(sys,[5,10,inf],{tol=.5})

To see both outputs, use square brackets and assign the outputs to variables:

[Rp,C]=Residue(sys,[5,10,inf],{tol=.5})

For additional information, see 3.5 Using Predefined Functions and Commands, p.85.
Xmath function syntax is detailed for each function in the MATRIXX online Help.
For a detailed description of how to use MathScript to define your own functions,
see Chapter 6.
57

MATRIXX 7.0
Xmath User’s Guide
2.3.2 Command Syntax

Like functions, commands operate on inputs. However, command inputs are
passed by reference and can be changed within the command.

In the MathScript language, command syntax is as follows:

command arg1, arg2, …argN, {keywords}

For examples of this syntax, see the MATRIXX online Help Commands topic.

If you have been working through the tutorial, you might realize that intrinsic
commands have a special syntax. Syntaxes we have used are:

new partition part_name
set partition part_name
delete part_name
save "filename" var_1 var_2 var_n
load "filename" var_1 var_2 var_n

The most obvious difference is that these commands require spaces rather than
commas as separators. The whatis command reveals a fundamental difference
between these commands and other MathScript commands (MSCs):

whatis save

save: intrinsic command

Xmath includes many intrinsic commands and functions. These commands and
functions are part of the Xmath executable.

See the MATRIXX online Help for descriptions of Xmath commands. For a
detailed description of how to use MathScript to define your own commands, see
Chapter 6.

2.4 Graphics

The Xmath plot() function provides two and three-dimensional graphics that you
can manipulate interactively while they are displayed in the Xmath Graphics
window. This section introduces plot() and several types of plots it can create.
58

2

2
JumpStart: A Tutorial
Two additional general purpose plotting functions, uiPlot() and plot2d(),
complement the capabilities of plot(). A brief description of these functions can be
found in 4.1 . Xmath Plotting Functions and Commands

2.4.1 Plot()

The plot() function creates a graph object that Xmath displays in the Xmath
Graphics window. The most complete syntax for plot() is:

graphObj = plot(x,y,z,colorindex,{keywords})

2D graphs are produced with y, or x, y as arguments, while 3D graphs require x, y,
and z. For other plot() syntaxes see 4.2 Using the plot() Function, p.108.

plot() behaves like other Xmath functions in the following ways (functions are
discussed in 2.3 Functions and Commands, p.57.):

■ If no output variable name is assigned, Xmath assigns the output (graph
object) to the temporary variable ans.

■ Xmath displays a graph object in the Xmath Graphics window when it is
created unless you use a semicolon as a terminator. If you create a graph
object within a MathScript, only a ? terminator causes it to display.

■ You can display a graph object with the ? terminator anytime after creation.

■ You can save and load a graph object.

Keywords

Keywords define a graph’s labeling, layout, and appearance. This tutorial
introduces basic keyword use. For a complete keyword listing, see Table 4-5,
p.113, or the MATRIXX online Help plot topic. You can create or change many of
the features for which keywords are used interactively via the Xmath Graphics
window menus or the Xmath Palette.

Graph Objects

plot() is the only function that outputs a graph object. Xmath creates a graph
object whenever it displays the output of the plot() function in the Xmath Graphics
window. If you specify an output variable name, Xmath writes the contents of the
Xmath Graphics window to the variable; otherwise, Xmath writes the contents to
59

MATRIXX 7.0
Xmath User’s Guide
the default variable ans. If you suppress plot with a semicolon, Xmath writes
nothing to the Xmath Graphics window. (Other functions may display plots in the
Xmath Graphics window, for example, windowing functions such as firwind(), but
their actual function output is numeric. Only plot() allows you to name the
contents of the Xmath Graphics window.)

You can copy, save, display, and reload a graph object like any other variable.
Additionally, it can be altered or used in a new graph if you use the keywords
keep or copy. We explore the implications of the graph object later in the tutorial.

2.4.2 Working in the Xmath Graphics Window

When you use the plot function without suppressing its output, Xmath opens the
Xmath Graphics window. The following mouse actions are defined for this
window:

■ To select an object, click it.

An object can be a text string, label, grid, data, and so forth.

■ Double click an object to select the object and bring up the Xmath Palette.

The palette title area (center top) gives information on the object you’ve
selected. For example, the title Xmath Palette (tics:axis line) indicates that
you’ve selected an axis line.

Different menu items and palette locations on the Xmath Palette are enabled
based on your selection. For example, if a label is selected, the Font and Point
menus are enabled, and the text color can be changed via the palette.

■ If you have difficulty selecting an object (for example, you attempt to select a
tic mark, but you keep getting the axis), then hold down the Shift key while
clicking.

Xmath cycles through selecting the objects closest to the cursor. A glance at
the palette title area reveals the selected object.

■ Click and drag to move objects.

Objects that you can move independently are the legend, date, time, free text,
and graphics that you create with the graph tools in the Xmath Graphics
window icon bar. You cannot move a graph and its associated plot data, grids,
labels, axis information, and so forth interactively, but you can move the
entire graph with the plot() keyword position (see p.137).
60

2

2
JumpStart: A Tutorial
2.4.3 Using Plot and Graph Objects

You can plot objects in two- or three-dimensional plots.

Using 2D Plotting Capabilities

Before continuing, generate a few waveforms:

set seed = 0 # Set random seed
a = sin(logspace(1,10,15));
b1 = kronecker(a,a);
b2 = b1 + 0.2*random(1,225);

Here graph_b1 is a graphical object with b1 plotted versus a time sequence:

t=0:0.01:2.24;
graph_b1=plot(t, b1,{title="xy plot",x_lab="time(sec)"})?

If you can’t see the graph, select Windows→Graphics to bring the Xmath Graphics
window to the front.

Plot b2 with specific labels and titles:

graph_b2=plot(b2, {y_lab="volts",x_lab="sample",
title = "sample display",legend = "noisy wave"})?

You can plot the original noise-free waveform b1 over the existing plot by copying
the graph object graph_b1 into the current graph. In the command area type:

both_b=plot(b1,{copy=graph_b2,line_style=3,
line_width=2,legend = "original wave",!grid})?

Figure 2-1 shows the result. b1 is plotted as a thicker dotted line added to
graph_b2, a new entry is added to the legend box, the grid is suppressed by the !
negator, and the image is given the name both_b.
61

MATRIXX 7.0
Xmath User’s Guide
To see the first plot, type:

graph_b1?

You do not need to execute the previous plot call to see the graph. graph_b1 is
unchanged because the keyword copy was used and the current contents of the
window were given a new name (both_b). If you are adding to a plot and it is not
important to retrieve your previous efforts, use keep instead of copy. keep is much
faster than copy.

When you make interactive changes to a graph object displayed in the Xmath
Graphics window, the changes immediately become part of the current graph
object. To preserve graph_b1 as it is, rename the graph before making changes in
one of following ways:

■ From the Xmath Graphics window menu bar select File→Bind to variable and
save the contents of the Xmath Graphics window to the name g1.

■ From the Xmath Commands window command line, type:

g1=plot()

Figure 2-1 Overlaid Graph Objects
62

2

2
JumpStart: A Tutorial
Calling plot() with no arguments binds the contents of the Xmath Graphics
window to the output variable name.

To illustrate that changes immediately become a part of the current graph object,
go to the Options menu and turn on the timestamp and datestamp; then move
them to new locations. Double-click a text string, and then change the font and
point size using the Xmath Palette. Double-click a curve either in the data or in the
legend, and then go to the Xmath Palette and change the marker and line styles.

Display the object graph_b1 and then the object g1:

graph_b1?

g1?

Using 3D Plotting Capabilities

To demonstrate some of the 3D plotting capabilities, create x, y, and z:

x= [-2*pi:.65:2*pi]';
y= logspace(1,2*pi,20);
z= sin(x)./x*(sin(y)./y);
plot(x,-y,z,{title="A 3D Plot",xlab="the xlabel",
ylab="the ylabel",zlab="the zlabel",!grid})?

Figure 2-2 shows these results.
63

MATRIXX 7.0
Xmath User’s Guide
You can rotate 3D plots with the rotation tools on the far right of the menu bar in
the Xmath Graphics window. The first tool allows you to rotate in all directions
(unconstrained); the remaining tools rotate about the three principal axes. Select a
rotation tool in the icon bar, and then move to the plotting area. When the tool is
active, just the grids are shown; click and drag the cursor until the grid is in the
position you want to see, and then release the mouse. Xmath redraws your graph
in the new position.

To return to the initial plot position:

Select View→Reset.

To turn off the rotation tool:

Click the arrow (selection tool) on the far left of the menu bar.

2.4.4 Using Different Plot Types

In this section, we illustrate the use of different kinds of plots: strip, polar, bar, and
contour.

Figure 2-2 3D Plot with Labels and Title
64

2

2
JumpStart: A Tutorial
Strip Plots

The strip keyword aligns two or more waveforms in stacked graphs sharing a
common x-axis. Optionally, you can specify the number of curves you want in
each graph. (Strip plots, like all other multiple graph plots, cannot be rotated or
zoomed.) The example below plots four variables; strip=2 specifies that each
graph should contain two curves (see Figure 2-3). We specify an optional
line_style vector with legend to distinguish the original values of b from the
absolute values.

set seed = 0 # Set random seed
a = sin(logspace(1,10,10));
b1 = kronecker(a,a);
b2 = b1 + random(1,100);
t=.1:0.05:5.05;
plot (t, [b1;b2;abs(b1);abs(b2)]',{strip=2,

title ="strip chart",line_style=[2,1],
legend=["volts","abs"],xmax=5.1,
ylab=["b1 volts","b2 volts"],xlab="time"})?

Xmath creates a single legend, and the two plots share the title and xlab. Strip
chart data is linked; to illustrate this, select a curve in one of the plots; the
corresponding curve in the other plot is also highlighted.

Figure 2-3 Strip Plot with Two Curves in Each Strip
65

MATRIXX 7.0
Xmath User’s Guide
Polar Plots

Xmath can display data in polar plots (see Figure 2-4). For example,

r = abs(sin(0:.1:35.9));
theta = 0:1:359;
plot(theta,r,{polar, fg_color="gray2",
line_color="royal purple", line_width=2})?

Bar Plots

Xmath also has bar graph capabilities.

Bar plots can be overlaid using the keep keyword. If a variable name is not
specified, keep adds what you specify to the current contents of the Xmath
Graphics window. The results of the example below appear in Figure 2-5.

plot(10:-1:1,{bar})?
plot([8,4.5,2,6,4.5,5,1.5,2,.5,.7],
{keep,bar,!xgrid,legend})?

Figure 2-4 Polar Plot
66

2

2
JumpStart: A Tutorial
Contour Plots

x= [-2*pi:.6:7]'; y=x;
z=1.2 + sin(x)./x*(sin(y))';

The first graph is a 3D surface plot, with grids suppressed:

plot (x,y,z,{!grid})?

With the keep keyword, you can overlay a 2D contour plot of the same surface
(see Figure 2-6):

plot(x,y,z, {keep,contour2d,!face,contour_interval = 0.5})?

Alternatively, you can display a 3D contour plot:

plot (x,y,z, {contour3d})?

Figure 2-5 Overlaid Bar Plots
67

MATRIXX 7.0
Xmath User’s Guide
2.4.5 Displaying Multiple Plots at Once

The rows and columns keywords allow you to display up to 25 different 2D and
3D graphs at once. The values you assign to rows and columns determine how the
screen is subdivided. Plots are then positioned on the screen with a combination
of row and column numbers or a graph_number. The rows and columns keywords
are initiators. This means they remain in effect until a plot call that does not
contain a row or column keyword is issued; at this point the default values
rows=1, columns=1 are reset.

The following example places four plots on the screen in two rows and two
columns. Note that you don’t need to specify row=1 or column=1; these are
default values. The result is shown in Figure 2-7.

set seed 0
h=histogram(rand(1:100),{nbins=7,noplot});
plot (b1,{rows=2,columns=2, line_color="blue"})?

plot (theta,r,{polar,row=2, fg_color=”gray2”,
line_color=”royal purple”, line_width=2})?

Figure 2-6 3D Plot with 2D Contour
68

2

2
JumpStart: A Tutorial
plot (h,{bar,column=2,!xlab})?

plot (x,y,z, {contour3d, xinc=4, yinc=4,!grid, graph_number=4})?

2.4.6 Animating Plots

Given a series of plots, the animate keyword draws each plot as fast as possible so
the progression looks like movement. For the following example, create a vector:

an1=sin(logspace(1,10,25));
an2=an1(25:-1:1);
an3=kronecker(an1,an2);

We will be looking at an3 using 100 points at a time. First, we plot the entire vector
using animate and a fixed axis (axisfix). By default, axes are adjusted to the
current plot range, so, if animate is enabled, axes may change while plotting. In
this call, axisfix holds the axes of the current plot (until they are changed), ensures
that the plot background remains the same, and (since the whole vector is plotted)
that the plot area is not too small for the plot.

plot(an3,{animate,axisfix,xmax=100})?

Figure 2-7 Different Plot Types Positioned with row and column Keywords
69

MATRIXX 7.0
Xmath User’s Guide
The animate keyword stays active until it is disabled explicitly.

Use a loop to plot portions of the data while animate is enabled:

for i=1:7:524
plot(an3(1,i:i+100))

endfor

To turn off animate type:

plot({!animate})

Alternatively, you can use plot({reset}) to reset all plot defaults.

If you are curious about axisfix, repeat the above example without it, and watch
the axes.

2.4.7 Finishing the Graphics Tutorial

The above examples show only a sampling of the options available for plot().

For more information on plot() graphics, first ensure that animate is switched off.
Then run the graphics demo:

plot({!animate})
execute file = "$XMATH/demos/graphics"

Also see 4.4 Interactive Xmath Graphics Window, p.151, and the MATRIXX online
Help Xmath, Plotting topic.

This ends the graphics portion of the tutorial. Before moving on, you should
delete the variables you created in this section:

delete *.* # Delete all variables in all partitions

2.5 Objects

Unlike most numerical tools, which only deal with matrices, Xmath employs
object-oriented programming principles. See Figure 5-1, p.168 for a full
description of the Xmath object hierarchy structure. For example, the Toeplitz
matrix class is a special kind of square matrix class. It inherits all the properties of
70

2

2
JumpStart: A Tutorial
the square matrix class but automatically takes advantage of specific operations
which can be performed more efficiently for Toeplitz matrices.

Benefits from Xmath’s object-oriented structure include:

■ Fewer variables to manage. A single variable can represent several very
complex pieces of data. Therefore, you don’t need as many variable names,
which simplifies variable management.

■ Fewer functions. For example, a single function handles continuous and
discrete cases.

■ Faster calculations. Many objects take advantage of optimized algorithms.
This is especially true of all the specialized matrix objects. Xmath recognizes
special data properties and automatically uses an optimal method if available.

■ More intuitive syntax and ability to overload operators. Overloading means
that a single operator can have different meanings when it interacts with
different objects.

■ More compact user code. Because objects have clearly defined properties, it is
simpler for users to check and handle data in their programs.

This section briefly discusses the major Xmath objects. There are examples of how
to create each one and, in some cases, examples of special techniques with
operators or indexing. The examples create unique data for each object. Therefore,
you may quit the tutorial between any of the object discussions and restart when
convenient.

2.5.1 Strings

A string is a set of characters enclosed in double quotes. To display double quotes
within a string you must provide two sets of quotes (""). You can convert numbers
to strings with the string() function, while the char() function gives the ASCII
character for a given integer between 0 and 255.

a = "The total score is ";
b = 301;
c = a + string(b)?

c (a string) = The total score is 301

You can create a matrix of strings using the familiar matrix-constructor syntax.

a = ["one", "two"; "three", "four"]
71

MATRIXX 7.0
Xmath User’s Guide
a (a square matrix of strings) =

 one two
 three four

When entering strings in the Xmath Commands window command area, remember
that a single string must be complete on a line. If for some reason you must break
the string, create separate strings and append them with the + operator:

text="Xmath strings cannot be continued " +...
"across lines, but separate strings can " +...
"be appended with the + operator."

text (a string) = Xmath strings cannot be ...

2.5.2 Matrices and Vectors

This section demonstrates how to create and use matrix and vector objects. It also
shows how Xmath’s object-oriented structure improves the computational speed
of matrix operations.

Creating Matrices and Vectors

You must enclose matrix specifications in square brackets; you separate elements
in separate rows by commas and row elements, by semicolons or line feeds:

[1,2; 3,4] # A semicolon or a linefeed
[1,2 # can separate rows
 3,4]

ans (a square matrix) =
 1 2
 3 4

ans (a square matrix) =
 1 2
 3 4

A vector is a single row or single column matrix. An apostrophe (’) transposes a
vector or a matrix.

i=[1,2,3]

 (a row vector) = 1 2 3

i'
72

2

2
JumpStart: A Tutorial
ans (a column vector) =

 1
 2
 3

Regular vectors are row vectors specified as three values in the form
start:step:end.

time=0:0.01:10

time (a regularly spaced vector) = 0 : 0.01 : 10

The logspace() function creates logspaced vectors with points evenly spaced on a
log scale. Like regular vectors, logspaced vectors are stored as three values.

log1=logspace(1,2,5)

log1 (a log-spaced vector) = 1 : 2 (5 points)

Transposing a vector or enclosing it in square brackets expands it:

log1'

ans (a column vector) =

 1
 1.18921
 1.41421
 1.68179
 2

[time]

ans (a row vector) = 0 0.01 0.02 0.03 0.04...

To form a vector with descending values, use a negative step:

k2=[2:-.25:1]

k2 (a row vector) = 2 1.75 1.5 1.25 1

To reverse a vector, use a negative step value:

k3=k2(length(k2):-1:1)

k3 (a row vector) = 1 1.25 1.5 1.75 2

Use vectors in expressions and to define new matrices:

g=[1:3;logspace(1,20,3)]
73

MATRIXX 7.0
Xmath User’s Guide
g (a rectangular matrix) =

 1 2 3
 1 4.47214 20

Matrix Index Operations

Create the matrix testm:

testm = [1:3;4:6;7:9]

testm (a square matrix) =

 1 2 3
 4 5 6
 7 8 9

To find any element in testm, give the matrix name followed by the row and
column index in parentheses:

testm(2,3)

ans (a scalar) = 6

To find the second row in testm, use a colon (:) as a wildcard symbol in place of
the column index to denote “second row, all columns”:

testm(2,:)

ans (a row vector) = 4 5 6

To find any column in testm, use the wildcard symbol (:) in the rows position:

testm(:,1)

ans (a column vector) =

 1
 4
 7

To find submatrices, use vector inputs:

testm(1:2,2:3)

ans (a square matrix) =

 2 3
 5 6
74

2

2
JumpStart: A Tutorial
The function find() allows you to find indices for matrix elements that meet a
certain criterion. find() returns each index in [row, column] format.

find(testm > 7)

ans (an index list) =

 3 2
 3 3

The output indicates that the elements found in the third row, second and third
columns (3,2) and (3,3) are greater than 7.

You can incorporate find results as a special indexing scheme to perform an
operation on only the elements meeting the criterion in find.

testm(find(testm > 7)) = 0

test_matrix (a square matrix) =

 1 2 3
 4 5 6
 7 0 0

Xmath changed the elements greater than 7 to zeros.

Using Matrix Functions

Matrix functions take advantage of the structure of matrix objects. The more
specialized a matrix is (that is, the more properties it inherits), the greater the
computational speed improvement. For example, consider computing the
eigenvalues of a common matrix, a symmetric matrix, and a triangular matrix of
the same size (100 ×100).

The clock() function monitors elapsed CPU time. It returns the time in seconds
since clock() was last called. Therefore, you should call it before and after the
monitored process.1

rmat = random(100,100);
clock({cpu});mm = eig(rmat); clock({cpu})?

Xmath automatically uses more efficient algorithms when the matrix fits a given
structure. The above example tells how long it takes to find the eigenvalues of a
general, random (100 ×100) matrix.

1. clock() results depend on your machine’s configuration.
75

MATRIXX 7.0
Xmath User’s Guide
In the following example, you can see how long it takes with a symmetric matrix
of the same size. We use the transpose operator (') to ensure that the matrix is
symmetric:

smat = rmat * rmat';
clock({cpu}); mm = eig(smat);clock({cpu})?

eig takes even more advantage of a triangular matrix:

tmat = triu(rmat);
clock({cpu}); mm = eig(tmat); clock({cpu})?

Xmath checks object properties before computations so that it uses the fastest
algorithms and performs no unnecessary computations.

2.5.3 Polynomials

To create a polynomial, specify its roots with the polynomial() function, or specify
its coefficients with makepoly:

poly1 = polynomial([1,5])

 (x - 1)(x - 5)

poly2 = makepoly([1:.7:4.5])

5 4 3 2
 x + 1.7x + 2.4x + 3.1x + 3.8x + 4.5

The default variable name is x. Both functions have an optional string argument
that specifies the variable name. For example:

p = polynomial([1+jay,1-jay],"s")

p (a polynomial) =

 2
 (s - 2s + 2)

Several operators and functions are defined differently for polynomials than they
are for matrices.

Multiplying two polynomials with the * operator returns the polynomial
convolution:

poly3 = poly1*poly1

poly3 (a polynomial) =
76

2

2
JumpStart: A Tutorial
 2 2
 (x - 1) (x - 5)

When adding two polynomials, the corresponding order terms of the two
polynomials are added:

poly1+poly3

ans (a polynomial) =

 4 3 2
 x - 12x + 47x - 66x + 30

Similarly, when adding a scalar and a polynomial, the scalar is added to the scalar
term of the polynomial:

poly1+1

ans (a polynomial) =

 2
 x - 6x + 6

When multiplying a polynomial and a scalar, the output format depends on the
format of the polynomial:

poly1*2

ans (a polynomial) =
 2(x - 1)(x - 5)

Use roots() to find the roots of a polynomial:

roots(poly3)

 ans (a column vector) =

 1
 1
 5
 5

Use polyval() to evaluate the polynomial with a scalar value for the variable:

polyval(poly2,3)

ans (a scalar) = 489.3

Indexing into a polynomial is similar to indexing into a matrix. To find and
change the coefficient of the third element, type:

poly2(3)
77

MATRIXX 7.0
Xmath User’s Guide
ans (a scalar) = 2.4

poly2(3) = 9

poly2(a polynomial) =

 5 4 3 2
 x + 1.7x + 9x + 3.1x + 3.8x + 4.5

2.5.4 Dynamic Systems

Xmath represents a dynamic system as either a transfer function or a state-space
system. A transfer function consists of two polynomials; a state-space system is
represented by four matrices. Transfer functions can only represent single-input
single-output (SISO) systems, but state-space systems can represent multiple
inputs and output (MIMO) systems. Objects for both types of systems can be
either discrete or continuous, depending on the value of the object’s sample rate.

Transfer Functions

A transfer function is built from numerator and denominator polynomials:

num = makepoly([1,-163,5.5]);
den = makepoly([1,2.7,5.6,3.5,8.1]);

Use system to create the transfer function:

sysTF = system(num, den, {dt = 1})

sysTF (a transfer function) =

 2
 x - 163x + 5.5

 4 3 2
 x + 2.7x + 5.6x + 3.5x + 8.1

 initial delay outputs
 0
 0
 0
 0
 Input Names

 Input 1

 Output Names

 Output 1
78

2

2
JumpStart: A Tutorial
 System is discrete, sampling at 1 seconds.

If you do not wish to specify a sampling rate, you can use the shorthand form:
sys=num/den.

To extract the numerator or denominator of a transfer function, use numden:

[n,d]=numden(sysTF)

n (a polynomial) =

 2
 x - 163x + 5.5

d (a polynomial) =

 4 3 2
 x + 2.7x + 5.6x + 3.5x + 8.1

State-Space Systems

To create a state-space system of the form

use system with four matrices as inputs:

ha=[1,0,0,.1; 0,-.2,.1,0; 0,1,0,0;-.2,0,0,1];
hb=[.5,0,0,.3]';
hc=[1,0,1,0];
hSS=system(ha,hb,hc,0)

hSS (a state space system) =

A
 1 0 0 0.1
 0 -0.2 0.1 0
 0 1 0 0
-0.2 0 0 1

B
0.5
0
0
0.3

x· Ax B u+=

y Cx D u+=
79

MATRIXX 7.0
Xmath User’s Guide
C
1 0 1 0

D
0

X0
0
0
0
0

System is continuous

Notice that Xmath creates continuous systems by default. To create a discrete
system, include the keyword dt, which sets the sampling period in seconds:

hSSd=system(ha,hb,hc,0, {dt = .1});

To extract the state and initial condition matrices from a system, use abcd:

[A,B,C,D,X0] = abcd(hSSd)

The functions sys2sns() and sns2sys() might interest you:

■ sns2sys() converts a system from MATRIXX to an Xmath object.

■ sys2sns() converts an Xmath system object to MATRIXX format.

Analyzing Dynamic Systems

You can display the time domain response of a system using the functions in
Table 2-2.

Table 2-2 Time Display Functions

impulse() Computes the impulse response of a system.

initial() Computes the unforced response of a system to a given initial
condition.

step() Computes the step response of a system.
80

2

2
JumpStart: A Tutorial
These functions return parameter dependent matrices (PDMs), our next topic. For
more on these functions, see the MATRIXX online Help.

bode, nyquist, and nichols display frequency-domain response in several
standard formats. For example, to see the bode plot of the continuous-time system
we created earlier, type:

bode(hSS)?

2.5.5 Parameter Dependent Matrices

A parameter-dependent matrix (PDM) is a collection of same-size matrices, with a
vector (called the domain) attached; each matrix depends upon a corresponding
element of the domain vector. A PDM stores matrices as functions of an
independent element parameter (the domain). A PDM is often a matrix of a
physical parameter, such as time, frequency, or speed.

PDMs are built from string, vector, and matrix objects using the pdm() function.
For example, the following PDM stores data in a legible compact format:

d=[95:99];
AR=[60.8; 59.3; 54.4; 50.7; 50.7];
CO=[41.2; 41.7; 36.3; 35.7; 35.3];
OR=[46.1; 47.5; 47.6; 46.7; 48.7];
WA=[45.4; 45.6; 44.0; 43.2; 43.9];
states=["AR","CO","OR","WA"]
eJobs=pdm([AR,CO,OR,WA],d,{domainName="Year",columnNames=states})

eJobs (a pdm) =

Year | AR CO OR WA
-----+-------------------------
 95 | 60.8 41.2 46.1 45.4
 96 | 59.3 41.7 47.5 45.6
 97 | 54.4 36.3 47.6 44
 98 | 50.7 35.7 46.7 43.2
 99 | 50.7 35.3 48.7 43.9

The advantage of storing the data, names, and domain together is clearer when
we create a plot such as Figure 2-8.

defTimeRange() Computes a default time vector for simulations.

sys*u() Performs a general simulation, where u is a PDM representing
system input.

Table 2-2 Time Display Functions (Continued)
81

MATRIXX 7.0
Xmath User’s Guide
g2=plot(eJobs,{strip,ymax=65,ymin=32,ylab="THOUSANDS",
line_color = "mulberry", line_width = 2})

PDMs are commonly seen as outputs from functions, such as those listed in
Table 2-2. If we calculate the impulse response and step response of hSSd (the
discrete state-space system created earlier), the responses are formatted as PDMs.
The output is too long to show here, but you can view it in the log area:

hIm=impulse(hSSd);
hSt=step(hSSd)?

It is convenient to store these related PDMs together in another PDM:

hPdm=pdm([hIm;hSt],{rowNames=["Impulse","Step"]})?

Plot the responses separately with the strip keyword:

plot(hPdm,{strip})

shows the results.

Figure 2-8 PDM Plotted with the strip Keyword
82

2

2
JumpStart: A Tutorial
The size of a PDM is given as rows × columns × length of the domain:

size(hPdm)

ans (a row vector) = 2 1 303

Portions of a PDM are accessible with indexing, similar to matrices. Extract the
fifth dependent matrix from hPdm:

hPdm(5)

ans (a pdm) =

domain |
-------+----------------
 0.4 | Impulse 0.5594

 | Step 2.1394
-------+----------------

To look at only the impulse responses, type:

hPdm(1,1)

ans (a pdm) =

Figure 2-9 PDM Impulse and Step Responses Plotted Separately
83

MATRIXX 7.0
Xmath User’s Guide
domain |
-------+-----------------

 0 | Impulse 0
 0.1 | Impulse 0.5
 0.2 | Impulse 0.53
 0.3 | Impulse 0.55
 0.4 | Impulse 0.5594
 0.5 | Impulse 0.5578
: : :

To perform a general simulation, you can multiply a system by a PDM. Here we
use freq to create a PDM.

u=freq(hSSd,deftimer(hSSd));
Y=hSSd*u;
plot(Y)

For more detailed information on PDMs, see 5.4, p.187.

2.5.6 Lists

A list object is a named collection of elements (objects). A list can contain varied
objects (including other lists). It is one-dimensional, storing your specified objects
regardless of dimensions or properties. Use the list() function to create this object:

set seed 0
scalar1 = 1;
string1 = "This is a string object";
poly = makepoly([1,2]);
matrix = random(5,5);
a_list = list(scalar1,string1,poly,matrix)

a_list (a list with 4 elements) =

1:
 1

2:
 This is a string object

3:

 x + 2

4:

 0.211325 0.756044 0.000221135 0.330327 0.665381
0.628392 0.849745 0.685731 0.878216 0.068374
0.560849 0.662357 0.726351 0.198514 0.544257
0.232075 0.231224 0.216463 0.883389 0.652513
0.307609 0.932962 0.214601 0.312642 0.361636
84

2

2
JumpStart: A Tutorial
A list containing four objects has a size of 4. To extract an element, specify its
order in the list:

a_list(3)

ans (a polynomial) =

x + 2

a_list(1)

ans (a scalar) = 1

2.6 MathScript

MathScript is the language of Xmath. Every instruction you have typed into the
Xmath Commands window so far is a MathScript statement. With a MathScript
script file, you can create and define a MathScript function, command, or object as
MathScript entities, which are immediately available for use without special
linking or compiling. (Chapter 6 describes how to create, define, and debug
MathScript entities.)

2.6.1 MathScript Features

MathScript provides the following features:

■ Familiar programming constructs such as for and while loops and if
statements.

■ Nested expressions:

x = 20 * log(abs(1 + 2 * jay))

■ Functions to obtain interactive user input, such as getline() and getchoice().

UserIn=getline("Enter the number of states now:")

vote=getchoice("Choose or Lose", ["Repub","Demo","Inde"])

■ Functions to determine whether objects possess certain properties (check and
is). For example:
85

MATRIXX 7.0
Xmath User’s Guide
a = [1,0;0,1]
check(a, {identity})

ans (a scalar) = 1

These features and more programming issues are discussed in Chapter 6.

2.6.2 Debugger Window (on UNIX Systems)

The MathScript Debugger window (Figure 2-10), referred to as “the debugger,”
allows you to interactively debug MathScript. Usually the debugger is activated
because a script contains a syntax error or a runtime error (see 6.4, p.245). It also
opens if you have set up a file to be debugged. You call debug the same way for
both functions and commands:

debug entity_name

The debugger opens whenever the function or command is invoked. To turn off
debugging, type:

debug entity_name off

When the debugger opens, the top field in the window contains the source of the
MathScript function or command you are debugging. The filename is displayed
below the menu bar. If you don’t have write privileges to the source file, the
source code may be opened read-only (not editable). The line that is about to be
executed is highlighted (unless there are syntax errors in the function, in which
case highlighting is used to identify the error). The message area, which displays
error messages that occur during execution, is just below the source code area.
You can use buttons at the bottom of the window in lieu of debugger commands.
86

2

2
JumpStart: A Tutorial
Run the debugger demo. It instructs you on how to edit an MSF that contains
syntax errors. From the command area, type:

execute file="$XMATH/demos/debuggingMS1"

For more on the debugger window, see 6.4, p.245.

Figure 2-10 Debugger Window (on UNIX Systems)
87

MATRIXX 7.0
Xmath User’s Guide
2.7 GUI Tools

Xmath offers a programmable graphical user interface (PGUI or GUI). For an
introduction to the GUI, and instructions on starting and using the GUI demos
and tools, see Chapter 9, Graphical User Interface.

To see some examples of GUI tools, type:

guidemo

To exit Xmath, see 1.3.3 Exiting Xmath, p.10.

2.8 Conclusion

This concludes the Xmath tutorial.

As you worked through the tutorial, you’ve become acquainted with the concepts
and procedures necessary to use the basic Xmath features (described in Chapters
3 through 5). Chapters 6 through 9 discuss advanced topics:

■ Chapter 6 tells how to write your own functions and commands using
MathScript.

■ Chapter 7 tells how to create your own MathScript object.

■ Chapter 8 tells how to link C, C++, or FORTRAN files to Xmath, and also
details how to call Xmath from an external program.

■ Chapter 9 tells how to program your own graphical user interface.
88

3

MathScript Basics
MathScript is the language of Xmath. MathScript contains many of the facilities
common to high-level programming languages, such as logical expressions loops,
comments, conditional statements, nested functions and recursion.

3.1 MathScript Statements

A statement is the smallest independent executable instruction. Here are some
examples of statements:

x = 7
y = ones(3,3)
who
set format long

The first two statements are examples of assignments. The last two statements are
examples of commands.

3.1.1 Assignments

The most common MathScript statement is an assignment. An assignment is a
statement that sets a variable to a specific value defined by the expression on the
right-hand side:

variable = expression
89

MATRIXX 7.0
Xmath User’s Guide
■ If an expression output is assigned to a variable, use the question mark (?)
terminator to display the result. To suppress the output, use the semicolon (;)
terminator.

■ A carriage return is also a statement terminator. If set display is on, a return
displays the result; if set display is off, nothing is displayed (see p.113).

■ Variable types do not have to be declared before assignment.

■ Objects can be completely or partially modified using assignment statements
combined with indexing. For example:

y = [100,21:24]

y (a row vector) = 100 21 22 23 24

y(1) = 0

y (a row vector) = 0 21 22 23 24

3.1.2 Rules for Names

Variable names consist of alphanumeric characters and internal underscores (_)
only.

■ Name components must be less than 32 characters in length. For example,
variable b in partition a (a.b) could have a total of 31 characters.

■ Names should not start with an underscore, because initial-underscore names
are reserved for internal use.

■ Variable and partition names are case sensitive. The following variables
represent two partitions and four different variables:

a.b; A.b; a.B; A.B;

You can create a variable with the same name as a predefined Xmath function or
command; however, you will be unable to access that pre-defined feature until you
delete the variable.

3.1.3 Expressions

An expression is a combination of variable names, functions, and operators that
evaluate to a single Xmath object. The Xmath object can then be assigned to a
variable name. For example,
90

3

3
MathScript Basics
(1+sin(pi/4))^2 # An expression

Expressions can be used as arguments to other functions or operators.

cep = abs(fft([1,-4,8,-2]))

The functions exist() and check() are exceptions. These functions require a
variable name as an argument.

Logical Expressions

In MathScript, a nonzero value (with the exception NAN and Inf) is considered
TRUE. All logical operators return 0 if FALSE and 1 if TRUE.

x = 3; x < (3 * cos(0))

ans (a scalar) = 0

Logical operators are “short-circuited.” For example, exp1 | exp2 | exp3 will
return 1 if exp1 is nonzero without evaluating exp2 or exp3. Therefore, careful
ordering of subexpressions in logical expressions may speed up execution.

Table 3-1 lists all MathScript logical operators. For a list of all Xmath operators,
see Table 3-3.

 Table 3-1 MathScript Logical Operators

Operator Effect

< Elementwise less than.

> Elementwise greater than.

<= Elementwise less than or equal.

>= Elementwise greater than or equal.

== Elementwise equal.

<> Elementwise not equal.

& Elementwise logical and.

| Elementwise logical or.

! The logical negator (!) appears directly before an expression. For example,
!expr.
91

MATRIXX 7.0
Xmath User’s Guide
Logical Expressions with Matrices

When used with logical operators, two matrices must be equal in size; the output
will be a matrix containing the element-by-element comparison results.

a = [1,0;1,1];b = eye(2,2);
a & b

ans (a square matrix) =

 1 0
 0 1

ans is a matrix with 1 in the locations where a and b are the same.

a < b

ans (a square matrix) =

 0 0
 0 0

You can also make logical comparisons with the functions check() and is(), which
return a logical value. The functions all(), any(), and none() can also be used to
return a logical value. See p.240 or the MATRIXX online Help for more details.

3.1.4 Operators

An operator is a nonalphanumeric symbol that operates on its operand(s).
Operators with only one operand are called unary operators. Operators with two
operands are called binary operators. Table 3-2 shows how operators are used in
expressions.

Table 3-2 Uses of Operators in Expressions

Format Type Example

operator operand Unary (prefix) -x

operand operator Unary (suffix) x'

operand1 operator operand2 Binary x+y
92

3

3
MathScript Basics
Table 3-3 lists the operators available in Xmath and their intrinsic functions;
overloaded functions are described in other chapters.

 Table 3-3 Xmath Operators

Xmath Operators

+ addition

- subtraction (and the unary operator negation)

* multiplication

/ right division, A/B solves the equation X∗ B=A

\ left division, B\A solves the equation B∗ X=A

' transpose (unary suffix)

*' Hermitian (complex conjugate) transpose

.* element wise multiplication

./ element wise division (left divided by right)

.\ element wise division (right divided by left)

^
or
**

raise to a power

.^
or
.**

raise elements to a power

.*. Kronecker product

./. Kronecker right division

.\ Kronecker left division

& logical AND

| logical OR

! logical NOT (unary operator)

< less than

> greater than
93

MATRIXX 7.0
Xmath User’s Guide
Operator behavior depends on the objects involved. Special behaviors are
discussed in detail in the object descriptions in Chapter 5, Data Objects and
Operators.

Operator Precedence

You can control operator precedence with parentheses. In Table 3-4, operators are
ordered with precedence from highest to lowest (reading from top to bottom).

<= less than or equal

>= greater than or equal

== equal

<> not equal

= assignment

() indexing, precedence, and function reference

{ } keyword delimiters in function references

[] matrix construction and concatenation

Table 3-3 Xmath Operators (Continued)

Xmath Operators

Table 3-4 Operator Precedence

high non–associative ' *'

left–associative ** ^ .** .^

↓ left–associative * / \ .* ./ .\ .*. ./. .\.

non–associative ! unary + unary -

↓ left–associative + –

left–associative :

↓ left-associative > < >= <= == <>

left–associative &

low left–associative |
94

3

3
MathScript Basics
3.2 Partitions

All variables reside in partitions. main is the default partition. You do not need to
specify the partition name of a variable if it resides in the current partition; just
call it by its local name.

Partitions must be created using new partition before any variables may be placed
in them. To create or use a variable in another partition, you must specify the
partition name. (Partition names must meet the naming rules in 3.1.2 Rules for
Names, p.90.) For example,

job1.R = R # Assign R in the current partition to the
variable R in partition job1.

job2.R = job1.R # From the current partition, perform
an assignment between two other
partitions.

■ To show the current partition, use the show partition command:

show partition

main

■ To list all defined partitions, type:

show partitions

Notice the s at the end.

Please perform the following steps to get a better understanding of partitions.

1. main is the default partition that is created whenever Xmath is started. If you
are in main, you can create an object in partition main by typing:

xx = 1

This is equivalent to main.xx = 1.

2. To create a new partition named var, type:

new partition var

3. You can navigate between partitions with the set partition command:

set partition var

show partition

var
95

MATRIXX 7.0
Xmath User’s Guide
xx

xx not found.

4. Because xx is defined in partition main, its partition name must be included:

main.xx? # variable from another partition

main.xx (a scalar) = 1

yy = 55? # create variable in current partition

yy (a scalar) = 55

5. Return to the main partition. The original main.xx is in local scope, while yy
exists in the partition var.

set partition main

xx

xx (a scalar) = 1

var.yy

var.yy (a scalar) = 55

6. A partition must be empty before it can be deleted. To delete a partition, use
the delete command. First, delete the partition contents, then the partition
itself:

delete var.* var.

3.2.1 Listing Defined Variables

To list all defined variables in the current partition, use the who command:

who

A single wildcard can be used with who:

who a* # List variables in the current partition
that start with a.

who otherPartition.*1 # List all variables that end in 1 in another
partition.

To list all variables in all partitions, type the following:

who *.*
96

3

3
MathScript Basics
Wildcards

Xmath allows the asterisk (*) and percent (%) symbols to be used as wildcards for
viewing, saving, loading, or deleting variables.

An asterisk denotes “any characters.” Used by itself, an asterisk is a wildcard for
all names. Therefore, delete * deletes all variables in the current partition. Used
with other characters, an asterisk replaces any number of characters in that
position. The percent sign replaces a single character in that position.

a3=4; a23=1; b22=144; c23=random(a3,a23);

who* #Show variables in the current partition.
who a* #Show variables starting with a.
who *3 #Show variables ending with 3.
who %2%" #Show 3-character names where 2 is

#the second character(a23, b22, c23).

3.2.2 Variable and Partition Comments

You may attach a comment string to a variable or partition name with the
comment command.

comment main. "this is the default partition"
a=97;
comment a "the first letter of the alphabet"

■ To retrieve the comment, use commentof():

commentof(a)

ans (a string) = the first letter of the alphabet

commentof(main.)

ans (a string) = this is the default partition

■ You can also view a variable’s comment if you invoke the Xmath Variables
window (see 3.2.5 Xmath Variables Window, p.99).

NOTE: You cannot use the wildcard * twice in a pattern. For example, *sys* is not
allowed, but *sys%% is accepted.
97

MATRIXX 7.0
Xmath User’s Guide
3.2.3 Permanent Variables

Permanent variables are values that have special meanings. These variables are
defined in all partitions as shown in Table 3-5

.

The name of a permanent variable or predefined function/command can be
overridden in the current partition or function/command scope, although it is not
recommended. When a value that has been given the name of a permanent
variable is deleted, the original definition reappears:

eps=2

eps (a scalar) = 2

delete eps

eps?

eps (a scalar) = 2.22e-16

sin=1?

sin (a scalar) = 1

sin(pi) # argument out of range

delete sin

Table 3-5 Permanent Variables

Variable Definition

Inf infinity

Jay sqrt(-1)

NaN Not a Number

eps very small number used to initialize outputs to be near zero but not
exactly zero

huge largest finite number less than Inf

null empty object

pi famous Greek number

tiny smallest possible number greater than 0

err global error status variable (set to NaN)
98

3

3
MathScript Basics
sin(pi)

ans (a scalar) = 1.22465e-16

3.2.4 ans

When a value returned from a function is not assigned to a variable name, it is
assigned to the variable ans.

sin(0.5)

ans (a scalar) = 0.479426

The value of ans is overwritten anytime the output of a function is not assigned to
a variable. Note that the value of ans is local to the current partition.

3.2.5 Xmath Variables Window

The Xmath Variables Manager window (shown in Figure 3-1) is a graphical interface
that simplifies variable management. From this window, you can view variable
and partition information, and load and save data.

Select Windows→Variables to invoke the Variables Manager window. The Variables
Manager window lists all variables in the current partition. At a glance you can see
the variable’s type, size, and attached comments (if any). If a variable is locked, an
@ sign appears on the far left. To display a variable, double-click on it. Numeric
and string objects are displayed in the log area of the Xmath Commands window,
and graph objects are displayed in the Graphics window.

Because the Variables Manager window is updated each time the value of a variable
changes, it is a good idea to minimize or close the window when you don’t need
it. Leaving it open while executing a lengthy For or While loop, for example,
decreases Xmath’s execution speed.
99

MATRIXX 7.0
Xmath User’s Guide
Fields

The mid portion of the window is devoted to variable information. Partition
information is displayed at the bottom of the window. To view variables in a
different partition, click the Partition button, and then select another partition from
the subsequent dialog.

Variable Name — The name of the variable.

Data Type — For variables, displays the major type: matrix, vector, polynomial,
PDM, system, string, list, or graph.

Value — The value of the variable.

Size — For variables, the dimension of the object. For partitions, the number of
variables in the partition. See the MATRIXX online Help size topic for more
information.

Comment — Displays the comments attached to the partition or the variables. You
can scroll to see lengthy comments for variables, but you may need to resize
the Variables Manager window to see a lengthy partition comment.

Name — The name of the partition.

Figure 3-1 Xmath Variables Window (UNIX version)
100

3

3
MathScript Basics
Menus

The Variables Manager window provides several pull-down menus with many
functions. Some of the most common functions on the menus are also available
from buttons immediately below the menu bar.

File — Allows you to save and load variables. For an explanation and an example
of how to use the file selection dialog, see Specifying Directory Pathnames and
Filenames on p.18. The load command accepts data saved from Xmath or
MATRIXX.

If you want to load data that has not been created by the above applications,
go to the command area in the Commands window and use the read
command. read can place part or all of a data file into an Xmath matrix
variable (see 3.7.3 Reading Non-Xmath Data Files into Xmath, p.112). save and
load operations can also be accomplished from the command area of the
Commands window (see 3.7 Saving and Loading Data, p.108).

The File menu also allows you to print and perform standard window
operations.

Edit — Lets you perform various editing functions for the partition or variable.

Copy, Rename, and Modify Data operate on a selected variable; note that
wildcards are not allowed here. Modify Data also allows you to lock or unlock a
variable.

Delete removes the selected variable, and Undelete retrieves the last deleted
variable.

View — Controls the order in which variables are listed. By Name displays
variables in case-sensitive alphabetical order from top to bottom. By Date (the
default) displays variables in the order created. The latest variable is shown at
the bottom of the list. By Size shows variables sorted by dimension from top to
bottom. By Type shows objects grouped by alphabetized type.

Format — Allows you to set the format of the Value field for variables.

Options — Provides a Find function along with select and deselect functionality.

Find searches the current partition for the specified variable, and lists the
result. A single wildcard is allowed in the find pattern. To find the specified
variable in all partitions, select Edit→Find and specify the * wildcard in place
of the partition name in the Pattern field. For example, to find the variable a in
all existing partitions, specify the following pattern: *.a.
101

MATRIXX 7.0
Xmath User’s Guide
3.3 Punctuation

MathScript has special uses for the ?, ;, ..., #, and . characters. These are illustrated
in Table 3-6.

Table 3-6 Punctuation Mark Usage

A question mark is a statement terminator. When placed after a numeric or string
object, the value is displayed in the log area; when placed after a graph object, the
graph is displayed in the Graphics window.

y = eye(3,3)?x=y/2;

y (a square matrix) =

 1 0 0
 0 1 0
 0 0 1

Interactively, the default display behavior (which can be changed via set
display), is to display the output of all assignments and expressions not
terminated by a semicolon. If this is the behavior, the question mark is only
needed as a separator. If set display is turned off, output is suppressed unless a
question mark is used (see p.113).

A semicolon (;) disables display to the log area, and acts as a separator or
terminator. A semicolon disables display regardless of whether set display is on
or off.

x = 1:3:10; x'

ans (a column vector) =

 1
 4
 7
 10

?

;

102

3

3
MathScript Basics
An ellipsis (...) is a continuation symbol that allows an Xmath statement to span
multiple lines:

plot ...
(rand(1,50),{title="Testgraph",line_style=1})

Ellipses are not required if a line ends with a comma, or an operator:

plot (x,y,z,{x_lab="Hello",y_lab="Goodbye",
z_lab="Leave town before sundown!"})

However, you cannot continue all commands, even if you use the ellipsis. For
example, you cannot split an output assignment; thus, the following multiple line
entry results in an error:

[blocknr=selectedblocks,sbname=name,
sbin=inputs,sbinname=inputname,
sbout=outputs,sboutname=outputsignal] = querysuperblock();

You could split this example input before or after the equal sign (=) but nowhere
else.

A pound sign (#) comments out everything to the right on a single line. To
comment multiple lines of text, surround them with #{ }#.

#Comment a single line
#{You can comment
 multiple lines}#

Table 3-6 Punctuation Mark Usage (Continued)

...

#

103

MATRIXX 7.0
Xmath User’s Guide
3.4 Iterative Conditional Statements

In MathScript, For and While loops have the syntax shown in Figure 3-2.

If statements in MathScript have the syntax shown in Figure 3-3.

Note that end can be used in place of endFor, endWhile, or endIf.

Figure 3-2 For and While Loops

For variable = expression

commands

endFor

•

•
•

While expression
commands

endWhile

For Loop While Loop

•

•
•

For variable=vector, commands; EndFor

While expression, command; endWhile

Figure 3-3 If Statements

If expression

commands

elseIf expression

commands

else

commands

endIf

If relation, commands; endIf
104

3

3
MathScript Basics
3.5 Using Predefined Functions and Commands

To determine the origin of a function or command use the whatis command:

whatis freq

freq : intrinsic function

whatis bode

bode : ISI function (path/bode.xf)

whatis build

build: intrinsic command

■ Entities referred to as Wind River functions and commands are written in
MathScript. You can view the Wind River function and command MathScript
source in the location returned by whatis, as shown above.

■ Intrinsic functions and commands are written in C++ and built into Xmath by
Wind River; you cannot view this source. Chapter 6 describes how to use
MathScript to define your own functions (MSFs) and commands (MSCs). The
characteristics of Xmath objects are also intrinsic; Chapter 7 describes how to
use MathScript to define your own objects (MSOs).

3.5.1 Command and Function Calling Syntax

The rules described in this section are general; they apply to both intrinsic
functions and commands and MathScript functions and commands.

■ The names of functions, commands, and keywords are case-insensitive.

■ Function and command names can be abbreviated to minimum of four letters,
or the minimum number of characters that uniquely identify the name.

For example:

cova([1,2;3,4]);
t = makep([1,2,3,4]);

covariance() can be called by specifying the first four characters, while
makepoly() must be abbreviated to five characters (because it conflicts with
makematrix()):

■ Function inputs, keywords, and outputs are separated by commas.
105

MATRIXX 7.0
Xmath User’s Guide
[Ke,ev,P] = estimator(Sys,Qxx,Qyy)

Aliases

Names or strings can be aliased to a shorter string with the alias command (see
3.8.3 Abbreviating Command Names (alias and unalias), p.116). Then you can refer to
the name or string by its alias. For example:

alias ef execute file
alias ts title="TOP SECRET";plot(A,{ts})

Input Arguments

■ The syntax for calling intrinsic commands and MathScript commands is
slightly different. Inputs for MathScript commands are separated by commas,
similar to MathScript functions.1 For example:

xgraph t, {tgraph, average}

The majority of commands supplied with the Xmath Core are intrinsic (see
3.5 Using Predefined Functions and Commands, p.105), and the arguments are
separated by spaces:

save "filename" a b c

Use the syntax shown in the MATRIXX online Help when in doubt.

■ Functions and commands cannot be called with fewer than the required
number of input arguments, or more than the maximum number of inputs (as
specified in the syntax shown in the MATRIXX online Help).

Keywords

■ Keywords are optional and case insensitive. Keywords must be placed inside
curly braces { }, but the order is not significant.

■ A value can be assigned to a keyword. Keywords with no value assigned are
given Boolean values.

For example, the following calls give an identical result:

1. On the other hand, SystemBuild SBA commands are all written in MathScript, and use this
syntax exclusively.
106

3

3
MathScript Basics
g=plot(x,{legend,!grid})?
g=plot(x,{legend=1,grid=0})?

If a keyword is specified but not assigned to an expression, its value is set to 1.
This is useful for Boolean keywords, because 1 is interpreted as TRUE.
Preceding a keyword with the negation operator (!) causes its value to be set
to zero, or logical FALSE. The plot keywords specified above display a legend
and no grid lines.

■ Expressions can be used as arguments to keywords.

t = plot (x, {x_max = (4 * 256), x_lab="time"})

Single and Multiple Output Arguments

■ As discussed in 3.2.4 ans, p.99, if no output variable is specified, the output is
assigned to the default variable ans.

■ To view and assign multiple function outputs, an output name must be
specified in square brackets on the left side of the equation for each output
needed.

[T,S] = schur(A);

■ If functions return multiple arguments, the output arguments will be
matched left to right. Consider the function size:

[outputs,inputs,states] = size(aSystem)

If a multiple output function is called with a single output name, the output
will take the value assigned to the leftmost output according to the function
syntax.

x = size(aSystem) # returns outputs
[x,xx] = size(aSystem) # returns outputs, then inputs

■ You can skip specific output arguments. To do this, use commas as
placeholders.

[,,states] = size(aSystem)

■ Functions cannot be called with fewer than the required number of input
arguments or more than the maximum number of outputs (as specified in the
syntax shown in the MATRIXX online Help).

See also Variable Arguments on p.252.
107

MATRIXX 7.0
Xmath User’s Guide
3.6 Operating System Interface

The oscmd() function lets you use operating system commands while in the
Xmath environment. The output of the operating system command is displayed
in the Commands window log area. For example:

oscmd("ls") # UNIX
oscmd("dir") # Windows

The return value of oscmd() is the exit code of the operating system command.
For UNIX, if the command passed to oscmd() is backgrounded with &, the return
status is 0, not the execution status of the background command. This behavior is
consistent with UNIX calls.

3.6.1 Manipulate and Show Current Directory

The Xmath command set directory defines the default working directory. Here’s
how to change this directory:

show directory # Show current working directory.

/home/usr/xmath

set directory "/home/projX"
save x y z "3dTest.ms"

To set the directory via a dialog, select File→Set Directory.

3.7 Saving and Loading Data

Xmath provides commands for reading data files and writing Xmath objects in
files. One pair of commands, SAVE and LOAD, works directly on Xmath objects
and files. To increase the flexibility of the interface, the commands PRINT, READ,
and the function fprintf() work with a wider variety of file formats.

The SAVE command writes Xmath variables to a file if entered without
arguments:

save
108

3

3
MathScript Basics
All variables in all partitions are written to the binary file save.xmd, in the current
working directory. This is equivalent to selecting File→Save All.

The LOAD command without arguments loads the file save.xmd from the current
working directory:

load

Alternatively, selected objects can be saved and loaded, and you can specify a
different filename:

a = 1:1:10; b = "this is a test";c = 55;

Save a and b in file mysave.xmd:

save a b "mysave"; b = 27000;

Save b and c in file saveagain.xmd:

save b c "saveagain"
delete *
load b "mysave"
b

b (a string) = this is a test

load b "saveagain"
b

b (a scalar) = 27000

The extension xmd is appended to the filename unless you specify a different
extension.

Objects with the same names as objects in the loaded file are overwritten. For
example:

a = 1:1:10;
aa = "this is a test";
save
aa = 55

aa (a scalar) = 55

load
aa

aa (a string) = this is a test
109

MATRIXX 7.0
Xmath User’s Guide
The data is saved in Xmath binary format by default. Alternatively, the data can
be saved in an Xmath ASCII, MATRIXX binary, or MATRIXX ASCII (FSAVE)
format.

save "mysave" {ascii} # Xmath ASCII
save "mysave" {MATRIXx} # MATRIXx binary
save "mysave" {MATRIXx, ascii} # ASCII

See the MATRIXX online Help topics SAVE and LOAD for more information. For
information on how to save and load files in Xmath format without starting
Xmath, see LNX and UCI Functions on p.283.

3.7.1 ASCII Versus Binary Considerations

Format selection (ASCII or binary) is a tradeoff between loading speed and
portability.

Compared to the ASCII format, the binary format loads faster in Xmath. The
larger the data file, the more noticeable the speed advantage will be. On the other
hand, the binary format is typically larger in size and is not portable across
different Xmath platforms. For example, a data file created on SunOS will not be
usable on Windows NT. Furthermore, a binary data file must be transferred as
binary, for example, via the binary mode in FTP.

Before you send a binary data file via email, you must first encode the file with
uuencode (or an equivalent mail encoder), and the recipient of the email can then
use uudecode to recover the original binary file.

The ASCII format is fully portable. An ASCII format save file can be transferred to
any Xmath platform with NFS, FTP, or email. However, some email gateways
have restrictions on the length of lines of the email content. For such systems, the
save file, even though it’s ASCII, should be treated as a binary file for the purpose
of email transmission as mentioned above. Again, this requirement is the same for
non-Xmath files that contain long lines.
110

3

3
MathScript Basics
3.7.2 Saving Data in Non-Xmath Formats

print

The PRINT command outputs Xmath data to a file.

a = [1.1,2.2,3.3;4.4,5.5,6.6];
print a file="print.tst"
oscmd("more print.tst") #UNIX

::::::::::::::
print.tst
::::::::::::::
main.a =
1.1 2.2 3.3
4.4 5.5 6.6

ans (a scalar) = 0

If a file of the same name exists, it will be overwritten.

fprintf()

Using the same conventions for formatting as the C language routine fprintf(),
the fprintf() function converts numeric values to a string representation for
display, and writes them to an external file. For example:

N = 3;
s=fprintf("fpr.asc","%d Laws of Motion"n",N)

where n is the newline escape character sequence (see 5.6.2 Special Characters in
Strings, p.216). If an fprintf() call uses a filename that already exists, the output
will be appended to the existing file:

s=fprintf("fpr.asc","%d Laws of Thermodynamics"n",N)

Print out the contents of the newly created file to the log area:

oscmd("more fpr.asc") # UNIX
oscmd("type fpr.asc") # Windows

::::::::::::::
fpr.asc

NOTE: You can use the keyword reset to specify that the output file (if it already
exists) be truncated.
111

MATRIXX 7.0
Xmath User’s Guide
::::::::::::::
3 Laws of Motion
3 Laws of Thermodynamics

ans (a scalar) = 0

Refer to the MATRIXX online Help for more information on PRINT and fprintf().

3.7.3 Reading Non-Xmath Data Files into Xmath

The read() function reads data files of binary numbers or ASCII text files into an
Xmath matrix. The syntax for read() is:

matrix=read(filename,out_rows,out_cols,type,seek)

read() can be called with just the filename argument, in which case the entire
content of the file is read into an Xmath string value.

See the MATRIXX online Help read topic for more examples.

3.8 MathScript Environment

The SET, SHOW, GET, and REMOVE commands allow you to customize the
MathScript environment. The SET command affects many settings, including data
output format, and random distribution. Commands such as SHOW and
REMOVE and the function get() support other utilities for displaying current
variables and resetting conditions.

3.8.1 Changing Environment Settings

Certain aspects of the MathScript programming environment can be modified
using the set command. For example, SET format changes the numerical output
format:

x = 0.12345678901234567890?

x (a scalar) = 0.123457

set format longe
x

112

3

3
MathScript Basics
x (a scalar) = 0.1234567890123457e-01

set format shorte
x

x (a scalar) = 1.234578e-01

set echo on

show directory

/disk/math/test

Table 3-7 is a list of variables that SET controls.

Table 3-7 Environment Variables Controlled with SET

Variable Effect

autocompile Sets automatic compilation on/off for user-defined MSFs and MSCs
(see MathScript Program Compilation and Execution (.xf, .xc),
p.233). Default is On.

break Use from within the Xmath debugger (6.4 Using the Xmath Debugger,
p.245) to set a breakpoint at a specified line number.

buffering Sets text buffering on/off for output to the log area. Default is Off.
By default, Xmath sends output to the log area as soon as it is
available. If you are looking for maximum possible speed, SET
BUFFERING ON.

commanddiary Records command input in the file you specify (3.10 Recording an
Xmath Session (Diaries), p.121).

debugonerror Determines whether or not a script that contains a runtime error will
be debugged. Default is On. See 6.4 Using the Xmath Debugger, p.245.

directory Sets the working directory.

display When in interactive mode, if display is set to On, the result of an
assignment is displayed to the log area unless a semicolon (;) is used
to suppress the output. If display is set to Off, assignment outputs
are not shown unless a question mark (?) is used.

When a MathScript file is executed, the interactive display setting is
ignored. Function outputs, including plot output, are not shown
unless the question mark (?) terminator is used in the MathScript.

Default is On.
113

MATRIXX 7.0
Xmath User’s Guide
distribution Sets the distribution type for the function random(). Options are
uniform and normal. Default is uniform.

echo Sets on/off echoing of contents of executed MathScript files to the
Commands window log area, or the Graphics window, as the case
may be (see Echoing an Executable File, p.118).

If you want a function output to be displayed upon execution (this
includes plot output) a ? must be used in the file, and echo must be
on when it is executed.

Default is Off.

format Sets numerical display output format. Choices are: compact,
engineering, fixed, long, longe, scientific, short, shorte. fixed
sets the number of decimal digits in a floating point number to the
value defined with set precision (see precision below). Default is
compact.

partition Sets the working partition (see 3.2 Partitions, p.95).
The default for a new Xmath session is main.

path Sets a search path for user-defined MSFs and MSCs (p.231).
Multiple set path commands may be issued.

pause Sets pause to on/off. If pause is set to off, the pause command is
ignored. Default is On.

precision Specify an integer representing the number of decimal digits. This
number affects variable display when set format fixed is specified.
Note, most machines cannot display more than 15 or 16 digits.

seed Specify an integer to be the random seed. The random seed is reset
to 0 at the beginning of each Xmath session. To find the current seed,
use show seed or get({seed}).

sessiondiary Record Xmath inputs and outputs in a file (3.10 Recording an Xmath
Session (Diaries), p.121).

timestamp Turn on/off variable timestamping whenever a variable is changed
or modified. Turning timestamp off can save computational time
when variables used in a loop. Default is On.

Table 3-7 Environment Variables Controlled with SET (Continued)

Variable Effect
114

3

3
MathScript Basics
The REMOVE command cancels or deletes environmental settings, such as path,
sessiondiary, or commanddiary to cancel or delete the function. REMOVE fills this
need:

remove commanddiary

To check the current setting of any SET parameter, use the SHOW command:

show seed

1.11121e+09

The function get() can be used to return a current setting that can then be
assigned to a variable.

working_dir = get({directory});
working_dir

current_dir (a string) = /home/xmath/data

3.8.2 Expanding Pathnames in MathScript Files

Commonly, pathnames are represented by environment variables. You can
expand them within a MathScript file in several different ways. For example,

set directory = $ENVIR_VAR

works because directory is a specific option designed for the SET command. On
the other hand, if you use a general assignment, such as

file = "$XMATH/foo"

Xmath provides the result

$XMATH/foo

uiupdate Turn on/off variable and partition updating whenever a variable is
changed or modified. Turning uiupdate off can save computational
time when variables used in a loop. Default is On.

watch Use within the debugger to set a watchpoint for the named variable.

Table 3-7 Environment Variables Controlled with SET (Continued)

Variable Effect
115

MATRIXX 7.0
Xmath User’s Guide
because this assignment does not contain a command that was specifically
designed to expand environment variables.

If you want the expected results from the assignment statement above, you
should use the get function with the keyword path. For example,

file = get({path="$XMATH"}) + "/foo"

provides the expanded pathname.

You can find additional examples of this type of usage in the following files:

$XMATH/modules/basic/hardcopy.msc
$XMATH/modules/basic/version.msc

You can also use the oscmd() with the $ENVIR_VAR format; in this case, the
operating system expands the environment variable.

See the get(), SET, and oscmd() entries in online Help for further information.

3.8.3 Abbreviating Command Names (alias and unalias)

The ALIAS command allows you to substitute a name for a text string.

alias clear delete *
alias mkm makematrix

To see all current aliases, type:

alias

An alias defined in any context is local to the defined scope. For example, an alias
entered from the command line is not accessible from an MSF, MSC, or MSO.
Conversely, an alias defined in an MSF, MSC, or MSO is not accessible from the
command line.

Use the UNALIAS command to undo any aliases.

unalias clear

Alias substitution is performed at compilation time. Therefore, a code fragment
similar to the following will not have the intended effect:

alias sl save
if do_load
alias sl load

endif
sl # Always substituted with load because that was

the last alias command.
116

3

3
MathScript Basics
3.9 MathScript Batch Files

MathScript batch files contain sequences of Xmath statements. They are useful for
setting up user environments, performing repetitious tasks, and processing
programs in batch. MathScript batch files have no declaration statement, and
therefore, no inputs or outputs.

Batch files are run using the execute file command. A MathScript batch file
typically has the suffix .ms, but any suffix will do. If the suffix is .ms, you can
execute the file without specifying the extension (see 3.9.1 Executing a Batch File,
p.117).

If you do not want a function or command output to be displayed when the file is
executed, use the semicolon terminator (see p.102). If you want the output to be
displayed, you must use a question mark as a terminator. This also applies to the
output of the plot() function.

Executable strings must also be terminated by a semicolon (;) or question mark (?).
For example, the following is incomplete:

test_string = "show format";
execute test_string

From the above incorrect syntax, you receive the message:

Error(s) in executing show format

The correct syntax is as follows:

test_string = "show format;"
execute test_string

3.9.1 Executing a Batch File

You can execute a batch file from either the command area in the Xmath Commands
window or the File menu. From the command area, use the execute file command.
For example, to execute a batch file called myfile.ms in the current working
directory, type:

execute file = "myfile"
117

MATRIXX 7.0
Xmath User’s Guide
3.9.2 Echoing an Executable File

By default, when you execute a MathScript file, the contents of the file itself are
not echoed to the log area. If you specify SET ECHO ON, each statement is
displayed to the log area as it is being executed. To turn this feature on, type:

set echo on

You can find out the current echo setting by typing:

show echo

To turn the echo off, type:

set echo off

3.9.3 startup.ms (on UNIX systems)

The environment variable XMATH_STARTUP defines the properties of the Xmath
startup icon to execute the startup.ms batch file. This batch file contains
MathScript statements that execute every time you start a new Xmath session.
You can set up your initial working environment for the Xmath session (for
example, you can specify a list of directories as a search path).

Xmath looks for and executes startup.ms in the following order:

1. The space-separated list of directories specified in the environment variable
XMATH_STARTUP

2. The optional xmath subdirectory under your home directory ($HOME/xmath/
startup.ms)

3. The current directory (./startup.ms)

The environment variable XMATH_STARTUP can be set to include multiple
directories. For example:

setenv XMATH_STARTUP "/home/group /home/user"

Xmath will run startup.ms in /home/group and then /home/user. Example 3-1
shows a sample startup.ms file.

Example 3-1 Sample startup.ms File

set up aliases
alias sp set path =
set path to several test directories
118

3

3
MathScript Basics
sp "/usr/me/tests"
sp "/usr/me/tests/routines"
set up new partition and go there
new partition projectX
set partition projectX
output data display format
set format long

3.9.4 startup.ms (on Windows Systems)

The environment variable XMATH_STARTUP defines the properties of the Xmath
startup icon to execute the startup.ms batch file. This batch file contains
MathScript statements that execute every time you start a new Xmath session.
You can set up your initial working environment for the Xmath session (for
example, you can specify a list of directories as a search path).

The following are sample definitions for %XMATH_STARTUP%.

Xmath looks for and executes startup.ms in the following order:

1. The space-separated list of directories specified in the environment variable
XMATH_STARTUP

2. The optional xmath subdirectory under your home directory
(%HOME%\xmath\startup.ms)

3. The current directory (.\startup.ms)

You can set the environment variable XMATH_STARTUP to include multiple
directories. For example:

set XMATH_STARTUP="%HOME%\group %HOME%\user"

Windows NT: Set the path to the startup.ms batch file by selecting
Start→Settings→Control Panel→System. From the System
Properties dialog Environment tab, for example, add an entry in
the User Variables field (Variable, Value):

XMATH_STARTUP %HOME%\user

Windows 98 or
Windows 95:

Set the path to the startup.ms batch file by adding the
following line to your AUTOEXEC.BAT file (or to any other
startup batch file):

set XMATH_STARTUP=%HOME%\user

NOTE: You must define the %HOME% variable yourself.
119

MATRIXX 7.0
Xmath User’s Guide
Xmath runs startup.ms in %HOME%\group and then %HOME%\user.
Example 3-2 shows a sample startup.ms file.

Example 3-2 Sample startup.ms File

set up aliases
alias sp set path =
set path to several test directories
sp "\\user\me\tests"
sp "\\user\me\tests\routines"
set up new partition and go there
new partition projectX
set partition projectX
output data display format
set format long

3.9.5 I/O Redirection

If you have a lengthy automated process that does not require interactive input,
you can run it in background or batch mode using the tty (non-graphical) version
of Xmath.

To create a MathScript file suitable for batch execution, start by using an editor to
write a script file containing the instructions as you would enter them from the
Xmath command line. Alternatively, you can start with a command diary file.
Data generated in the batch script file can be written to an external file using the
SAVE command.

If a file runs to completion and unsaved variables exist, Xmath asks the question:

Modified variables that have not been saved exist; quit anyway? (y/n)

This presents a problem because you cannot respond while in batch mode. To
bypass the situation, you must SAVE or delete the data at the end of the file. The
final entry in a batch file must be QUIT. (If QUIT does not end the file, Xmath will
remain in terminal mode.)

I/O Redirection

To run the completed batch file from the UNIX command line, type:

% xmath -tty < batchfile.ms > batchfile.output
120

3

3
MathScript Basics
where the MathScript input is contained in batchfile.ms, and the output results
are redirected to batchfile.output. (The output file contains anything that would
normally appear in the Commands window log area, so be sure that echo is set
properly.)

3.10 Recording an Xmath Session (Diaries)

Xmath can automatically record commands and responses using command and
session diaries. A command diary records user input only, while a session diary
records user input and the Xmath responses.

To create a diary, the environmental variable echo must be on. If it is off, a diary
file may be opened but nothing will be recorded in it. To determine the echo
setting, type:

show echo

If echo is off, you must type set echo on to activate it.

3.10.1 Recording Inputs (Command Diary)

Command diaries record MathScript input. A command diary is by definition an
executable file; it contains all valid instructions issued while the command diary
was set. However, when the file is executed, you may not see all the outputs you
did when you captured the commands; you must either edit the diary to insert the
proper terminators, or be sure to use them when you input the commands you are
capturing.

To open a command diary, type:

set echo on

set commanddiary "mytest.ms"

where mytest.ms is the name of the diary file. The file is placed in the current
working directory (see 3.6.1 Manipulate and Show Current Directory, p.108 for
details on setting the working directory). To see if a diary file is already open,
type:

show commanddiary
121

MATRIXX 7.0
Xmath User’s Guide
If the specified file does not exist, it will be opened for writing. If a diary file of the
same name exists, it will be closed and a new file opened.

t = 1:0.1:100
s = sin(t)
g=plot (s)?

To close a diary file, use the remove command:

remove commanddiary

Since a command diary contains only executable MathScript commands, you can
replay the contents using execute:

execute file = "mytest"

Note the output behavior when the file is replayed. When the calls were typed
interactively, the outputs of t and s were written to the log area, but when the file
was executed the outputs were omitted. When a value is assigned to a variable,
the function outputs will only be displayed if the question mark terminator (?) is
used, as was the case for the graph object g.

3.10.2 Recording Inputs and Outputs (Session Diary)

A session diary records inputs and outputs, that appear in the Commands window
log area while the diary is open. This can be useful when the contents of a data
object need to be recorded in the file. For example:

set echo on

set sessiondiary "session1"

test1 = 0.75;
exist(test1)
sin(test1)

remove sessiondiary
oscmd("more session1")

Because session diaries include outputs (which are not MathScript statements),
they cannot be executed as command diaries until they are edited.
122

4

Graphics
This chapter begins with an outline of the plotting functions and commands
available in Xmath. The remaining sections show how to graphically display your
data with the plot() function, and also how to change its appearance interactively
with the Xmath Graphics window.

4.1 Xmath Plotting Functions and Commands

4.1.1 General Purpose Plotting Functions

Xmath provides a choice of three basic plotting functions:

■ The plot() function provides an easy to learn syntax for 2d and 3d plotting in
an interactive graphics window. For a quick, interactive look at your data, and
for 3d plotting, plot() is a good choice.

■ The uiPlot() function provides full featured 2d plotting integrated with an
extensive programmable GUI facility. If you want more control over the
formatting of your 2d graphics, or the ability to integrate plots with your own
interactive Xmath PGUI tools, then uiPlot() has the power you need.

■ The plot2d() function recognizes most plot() keyword options and provides
quick access to advanced formatting features of the uiPlot() function, while
avoiding the cost of constructing a programmable GUI tool. Use plot2d() to
obtain highly-customized 2d graphics without writing a PGUI tool.
123

MATRIXX 7.0
Xmath User’s Guide
plot()

The plot() function and its associated Xmath Graphics window provide complete
interactive facilities for building, modifying, and viewing 2d and 3d graphics. You
can specify graph characteristics as keywords to plot, or you can add or modify
them interactively from the Xmath Graphics window menus or the Xmath Palette.

The output of plot() is a graphics object. Rather than archiving an executable file
that recreates a graph, you can save the images as graph objects. A graph object
can be displayed in the Xmath Graphics window, altered with keywords, or
combined with another plot to create a new image.

plot() keyword options facilitate multiple plots, strip plots, bar plots, polar plots,
contour plots, and scatter plots. The animation mode of the Xmath Graphics
window provides rapid sequential display of graphics objects.

This chapter provides additional detail on the capabilities of plot(). For further
information about plot() and associated plotting tools, see the MATRIXX online
Help Xmath, Plotting topic.

uiPlot()

The uiPlot() function formats and displays 2d plots (including line, scatter, and
polygon) in any uiPlotArea widget of a programmable GUI tool. While plot() is
limited to displaying its objects in a single Xmath Graphics window, uiPlot() can
generate and display plots in multiple windows. However, this power comes at a
considerable cost—the construction of programmable GUI tools and widgets.

uiPlot() features include interactive data-viewing, zooming, and curve selection.
Animation is achieved through the binding of curves to Xmath variables. Custom
callbacks can be programmed in GUI tools, providing application-specific,
graphic interaction with the data.

The uiPlot() function syntax provides access to the structure of the underlying
graphics database. The database hierarchy lets users specify graphics objects
much like how one specifies a file path. Properties can then be set using either
uiPlot() keywords, or generic option strings of the underlying graphics system,
resulting in a wide range of custom formatting capabilities.

For more information about the programmable GUI, see 9. Graphical User Interface.
For further details on using the uiPlot() function and associated plotting tools, see
the MATRIXX online Help Xmath, Plotting topic.
124

4

4
Graphics
plot2d()

The plot2d() function is based on uiPlot(), and is designed to implement most
capabilities of both plot() and uiPlot(), while avoiding the overhead of
programmable GUI tools and widgets.

In particular, plot2d() provides multiple graphics windows, interactive data-
viewing, animation through the binding of curves to Xmath variables, and the
power of the uiPlot function syntax. Some new features have been implemented
such as multiple Y-axes, advanced row/column layout options, and automatic
data scaling in one coordinate while constraints are specified in the other.

For those familiar with plot() syntax, plot2d() supports most of the 2d-related
keywords of plot(). It is possible to convert most scripts by substituting plot()
function calls with identical plot2d() calls.

The most obvious differences between plot2d() and plot() are that 3d plotting
options and the graphics object are not supported. All uiPlot() functionality is
available through the plot2d() function.

For further details on using the plot2d() function and associated plotting tools,
see the MATRIXX online Help Xmath, Plotting topic.

4.1.2 Comparative Analysis: plot() versus plot2d()

Table 4-1 plot() Advantages

3D Plotting plot() supports 3d lines and surfaces, and also 2d and 3d
contour plots. The plot2d() function does not support 3d or
contour plots.

Polar Plots plot() supports polar coordinate plotting. To display polar
plots, plot2d() users must write their own conversion script.

Graph Object The graphic result of a plot function can be saved to a variable.
plot2d() does not support graph objects.
125

MATRIXX 7.0
Xmath User’s Guide
4.1.3 Plotting Commands and Special Purpose Functions:

Several additional commands and functions are used with the general purpose
Xmath plotting functions. Brief descriptions are given here. Some are discussed in
more detail later in this chapter. For more information, see the MATRIXX online
Help Xmath, Plotting topic.

colorind

The colorind function creates a colorindex matrix used as a fourth argument with
the plot function to add color emphasis or a fourth dimension to 3d plots.

Table 4-2 plot2d() Advantages (these features also available with uiPlot)

Data Viewing plot2d() has the capability of displaying (X,Y) data values of
curves in a pop-up window interactively activated by the Right
Mouse Button (RMB).

Callbacks plot2d() callbacks can be attached to curves/sub-areas for
click/drag/release with modifiers. The callbacks are
implemented using MathScript.

Variable
Binding

By binding a variable to a plotted curve, the plot2d() plots are
updated as the variable changes. This is a superior to the plot()
method of achieving animated display.

Polygons plot2d() has polygon plot capability. plot() does not support 2d
polygon plots.

Hierarchy
Selection

By specifying hierarchy paths, selected elements of plot2d()
plots can be addressed for setting/changing attributes.

Plot Inclusion A plot2d() sub-area can be made to include a plot from some
other window. Useful for displaying a single post-stamp sized
element of a large row/column plot. Any changes are updated
automatically.

Drivers Setting generic Hoops options such as driver options,
heuristics, visibility and frame are available in plot2d().
126

4

4
Graphics
ERASE

The ERASE command can be used to erase the contents of the Xmath Graphics
window (plot function display).

HARDCOPY

The HARDCOPY command is used to create a hardcopy of the contents of the
Xmath Graphics window (plot function display), or a graphics object (plot
function display). It can also be used to create hardcopy of plot2d results.

pdmplot

The pdmplot function invokes a dialog driven process resulting in plots selected
from a specified pdm. It can be used with either the plot or the uiPlot plotting
system.

qplot

qplot is a simple uiPlot based function. Like plot2d, it provides use of uiPlot
features with a pre-programmed GUI. However, qplot does not support plot and
other high-level keyword capabilities of plot2d.

uiPlotArea

uiPlotArea is a programmable GUI function for creating uiPlotArea widgets.

uiPlotGet

uiPlotGet is a programmable GUI function for getting the current cursor position
to be used with callback routines.
127

MATRIXX 7.0
Xmath User’s Guide
4.2 Using the plot() Function

The plot() function creates 2D and 3D plots from data; complex components
(those containing imaginary elements) are ignored.1 You can call plot() with any
one of the following syntaxes:

graphObj = plot(y,{keywords})
graphObj = plot(x,y,{keywords})
graphObj = plot(x,y,z,{keywords})
graphObj = plot(x,y,z,colorindex,{keywords})
graphObj = plot()
graphObj = plot({keywords})
graphObj = plot(graphObj, {keywords})

In the preceding plot syntaxes, x is a vector or matrix; y is a vector, matrix, or
PDM; and z is a vector or matrix. If z is a matrix, a color index matrix colorindex
can be supplied to add color as a fourth dimension. Each syntax is discussed in
the following sections.

An existing graph object can be reused as an input in several ways; it can be
altered with keywords or combined with another plot to create a new image.

An optional graph object can be included as an input (for one, two, or three input
plots). If the data is compatible, the new data is overlaid on graphObj, and the
modified graph is returned as a graph object from plot(). However, a graph object
can also be referenced with the keep or copy keywords. The keep keyword is
preferable because it is fastest. In either case, you can reference a single graph
object. (You can’t specify keep and the optional graph object input in the same
call.)

If you input the data below, you can test each syntax in the sections that follow:

define vectors for plotting

v=[0:.25:30]';
vc=v.*cos(v); vs=v.*sin(v);

define a PDM

ypdm=pdm([vc,vs]);

define matrices for plotting
x=[vc,vc]; y=[vs,vs]; z=[1.5*v,1.5*v];
vm=vs*vc';
m=v*v';

1. If you need to plot complex data, you can make a real vs. imaginary cartesian graph. Given
complex data z, call plot(real(z),imag(z)).
128

4

4
Graphics
ms=[vs,-vs];
mc=[vc,-vc];

4.2.1 Plot One Input

For a single argument the syntax is plot(y):

■ If y is a vector with m elements, then y is plotted versus the vector 1:m.

plot(vc)?

■ If y is an m × n matrix, then each column of y is plotted versus the vector 1:m.
The result is n curves, each with m points.

plot(vm)?

■ If y is an m × n × d PDM where m × n is the size of each dependent matrix, and
d is the length of the domain (the independent parameter), then m × n curves
of d points are drawn, each versus domain(y). Therefore, each line
corresponds to a channel of a PDM (see 5.4.4 PDM Channels, p.194):

plot(pdm([vc,vs]))?

4.2.2 Plot Two Inputs

The syntax for two arguments is plot(x,y):

■ If x and y are vectors of the same length, then y is plotted against x:

plot(vs,vc)?

■ If x is an m × 1 or 1 × m vector and y is an m × n matrix, each of the n columns
of y is plotted against x on a single graph. Each curve has m points:

plot (vs,m(:,1:7:length(vs)))?

■ If x and y are both m × n matrices, then n curves are drawn, each consisting of
a column of y versus the corresponding column of x:

plot (m,vm)?

4.2.3 Plot Three Inputs

The syntax for three arguments is plot(x,y,z):
129

MATRIXX 7.0
Xmath User’s Guide
■ If x, y, and z are vectors of the same length, then z is plotted versus x and y as
a curve in space:

plot (vc,vs,v/3)?

■ If x is an m × 1 or 1 × m vector, and y is n × 1 or 1 × n, and z is an n × m matrix,
then z is plotted as a surface versus x and y:

plot (vc(1:50),vs(1:50),vm(61:110,61:110),{!grid})?

■ If x, y, and z are matrices of the same dimensions, then z is plotted versus x
and y as a surface in space:

plot (mc,ms,z,{!grid})?

4.2.4 Color as a Fourth Dimension

If inputs x, y, and z are supplied and z is a matrix, then you can pass a fourth
argument to use color to represent an additional dimension over the data surface.
In the following example, the fourth argument is a matrix the same size as z
generated by the colorind() function (a colorindex matrix). The values specified
with the face_color keyword are applied to the data surface at the locations in the
colorindex matrix:

v=[0:.25:30]';
x=v.*sin(v);
y=x;
z=vs*-vs';
z=z(31:60,31:60);
g1=plot(x(1:30),y(1:30),z,colorind(z),{face_color=9:19})

4.2.5 Creating and Displaying a Graph Object

This section discusses common plotting approaches. Keywords mentioned here
are discussed in detail later in this chapter.

Graph object output is handled like any other function output, except that it is
displayed in the Xmath Graphics window rather than to the log area. When no
output is assigned, the graph is written to the default object ans.

It is a good practice to use the ? terminator with plot(), regardless of how you call
it: interactively, in executable files, or in MathScript entities. This is particularly
important when plots are developed in a .ms file. (By default, set echo is off when
files are executed so Xmath displays only graphs with the ? terminator.)
130

4

4
Graphics
The keep keyword (which is also discussed in 4.3.5 Adding New Data to Existing
Plots (keep, copy), p.145) combines an existing graph object and any new
information. If the plots are compatible, the new information becomes part of the
specified graph. For example:

v=[0:.05:5];
plot(v.*sin(v),{title="The first curve."})?
plot(-v.*cos(v),{keep,title="The second curve."})?

The second curve is plotted over the first; note that plot() recognized there was
already a title and substituted the newest one. You can still add to the graph, and
this time name the output:

final=plot({ keep, xlog, xmax=100, title="The Final Graph",
legend=["1st curve","2nd curve"]})?

If saving a graph to a variable is an afterthought, you can capture the current
image in the Xmath Graphics window by selecting File→Bind to variable from the
Xmath Graphics window menu bar or by calling plot() with no arguments:

g2=plot() # name current graph object g2

Both File→Bind to Variable and Variable=plot() do the same thing as
Variable=plot({keep}).

Once a graph object is assigned to a variable, it can be saved to a file and then
loaded and displayed at a later time. Rather than creating an executable file that
recreates the graph, you can archive the images themselves.

4.3 Using Keywords with plot

Every call to plot() can have a list of keywords that modify the plot’s appearance.
Almost everything that can be done using keywords can be done interactively
with tools available from the Xmath Graphics window menus and the Xmath Palette.
Keywords, however, are very convenient because they provide command-line
control of graphics modifications. This implies that plot instructions can be saved

NOTE: If you have an observable delay, when you drag a window across an Xmath
Graphics window, try disabling the Show window contents while dragging checkbox on
the Control Panel→Display→Plus! tab (Windows NT only).
131

MATRIXX 7.0
Xmath User’s Guide
to and retrieved from a diary file or built up independently in a MathScript file.
Also, a keyword string may be aliased to a shorter string.

■ Plot keywords, as shown in Table 4-3, are used like any other keywords. As a
reminder, though, the type of information dictates how the keyword is
implemented.

For Boolean scalars, note that a nonzero value denotes TRUE/on, while 0
denotes FALSE/off. For example:

plot({grid,marker}) # grid and marker are on
plot({!grid,!x_lab}) # grid and x_lab are off

■ If you use the hold keyword, the keyword settings remain until you redefine
an attribute, until you use !hold, or until you call plot({reset}) (see Hold
Keyword on p.161).

■ You can use the negative operator ! to set a keyword to FALSE or 0. For
example, you can use either !grid or grid=0 to turn off all grid marks while
grid=1 enables them.

Sections 4.3.1 through 4.3.18 discuss keywords in functional groups (see Table 4-4)
using examples to illustrate how they work. Each keyword description gives its
default setting.

Table 4-3 Keyword Types

Keyword Type Input Samples

Boolean {!legend}, {!axisfix}

integer {rows=5}, {line_color=12}

vector {scale=[.5,.5],line_color=2:24}

string {title="My Beautiful Graph"}

vector of strings {legend=["input 1","input2"]}

Table 4-4 Keyword Categories

Category Section

Labels and legend 4.3.1

Colors 4.3.2

Line and marker specifications for data 4.3.3
132

4

4
Graphics
An alphabetized list of all keywords and the location of each appears in Table 4-5.

Multiple graphs and graph positioning 4.3.4

Adding new data to existing plots (keep,
copy)

4.3.5

Axis and zero lines 4.3.6

Tics and grids 4.3.7

Free text and global text settings 4.3.8

Axis limits and logarithmic scaling 4.3.9

Animate 4.3.10

Placement, scaling, and rotation 4.3.11

Background, edge, and face settings 4.3.12

Lighting source settings 4.3.13

Holding graph attributes 4.3.14

Strip plots 4.3.15

Bar plots 4.3.16

Contour plots 4.3.17

Polar plots 4.3.18

Table 4-4 Keyword Categories (Continued)

Category Section

Table 4-5 Plot Keywords (Alphabetized Listing)

Keyword Page Keyword Page Keyword Page

animate 155 line_width 140 x_axis_fix 148

axis 135 log 154 x_axis_line 148

axix_fix 148 marker 141 x_grid 150

axis_linea 148 marker_color 141 x_inc 154

bar 167 marker_size 142 x_lab 135
133

MATRIXX 7.0
Xmath User’s Guide
bg_color 158 marker_style 142 x_log 154

colormap 138 move 157 x_max 154

column 143 polar 170 x_min 154

columns 143 position 157 x_tic 149

contour 168 projection 156 x_tic_lab 150

contour2d 168 r_inc 170 x_zero_line 148

contour3d 168 r_max 170 y_axis 148

contour_interval 168 reset 161 y_axis_fix 148

copy 146 rotate 156 y_axis_line 148

date 135 row 144 y_grid 150

edge 159 rows 144 y_inc 150

edge_color 159 scale 156 y_lab 135

edge_style 159 strip 165 y_log 154

edge_width 159 text 152 y_max 154

face 158 text_angle 152 y_min 154

face_color 159 text_color 152 y_tic 149

face_style 159 text_font 152 y_tic_lab 150

fg_color 146 text_position 152 y_zero_line 148

graph_number 159 text_style 152 z_axis 148

grid 150 text_size 152 z_axis_fix 148

hold 161 theta_inc 170 z_axis_line 148

keep 146 theta_max 170 z_grid 150

keepsubplot 146 theta_min 170 z_inc 154

legend 136 tic 149 z_lab 135

Table 4-5 Plot Keywords (Alphabetized Listing) (Continued)

Keyword Page Keyword Page Keyword Page
134

4

4
Graphics
4.3.1 Labels and Legend

Labels allow you to place a text string in a specific location relative to the plotted
data. Labels are therefore bound to the plot and their locations cannot be changed.

The keywords legend, date, and time also place text on the graph, but you can
move these small text objects with the mouse. (To create “independent” text, use
the text keywords on p.152, or create free text interactively.) Table 4-6 summarizes
the labels and legends.

light 160 tic_lab 150 z_log 154

light_color 160 tic_maj 149 z_max 154

light_direction 160 tic_min 149 z_min 154

line 140 time 136 z_tic 149

line_color 140 title 135 z_tic_lab 150

line_style 140 x_axis 148 z_zero_line 148

a Underscores are always optional. For example, both x_axis and xaxis are acceptable.

Table 4-5 Plot Keywords (Alphabetized Listing) (Continued)

Keyword Page Keyword Page Keyword Page

Table 4-6 Label and Legend Keywords

Keywords Description

title String for the graph title above the plot. Default is an empty string.

x_lab String for the x-axis label. Default is an empty string.

y_lab String for the y-axis label. Default is an empty string.

z_lab String for the z-axis label. Default is an empty string.

date Places the date in the upper left corner; format is:
dayName_month_date_year.

Default is an empty string.
135

MATRIXX 7.0
Xmath User’s Guide
Tic labels (numbers corresponding to major tic marks) are discussed on p.149.

The example that follows creates 3D data and then creates the contour graph
shown in Figure 4-1. All axis information is negated so that you can clearly see
every label (negating axis information is optional). Note the string of vectors used
to label the legend. There are four intervals in this contour, and this vector of
strings provides new labels for only the first and last; the default label is
displayed for intervals where the null string "" is specified.

x=[-2*pi:0.35:2*pi]';
x=[x;x];y=x;
z=sin(round(x))./x*(sin(y)./y)';
legetext=["Mt. Everest","","","sea level"];
g=plot(x,y,z,{!grid,contour3d, time, date,

title="Contour Graph", xlab="the x label",
ylab="the y label", zlab="the z label",
legend=legetext})?

time Places the time in the upper left corner. Format is hour_minutes_seconds
on a 24 hour clock. Default is an empty string.

legend For multi-line or contour plots, you can specify a vector of strings naming
each line or contour, for example, legend =["Time","Speed"]. The
default labels for 2D plots are the line number followed by the
corresponding line style (and color, for color monitors). For 3D plots, the
default legend corresponds to differing surface styles.

Table 4-6 Label and Legend Keywords (Continued)

Keywords Description
136

4

4
Graphics
4.3.2 Colors

Many keywords take a color as an argument. You can specify colors by number or
name, and a vector of color names or numbers is acceptable. You can see the
current colormap on the Xmath Palette. On color monitors, up to 64 colors can be
allocated.

If a value is specified (an integer between 1 and 64), Xmath indexes into the
current colormap.

If a color name is specified, Xmath searches for a match in the following tables in
the order shown:

1. The currently installed Xmath colormap.

For black and white systems, the current colormap simply represents black,
six shades of gray, and white. On color systems, each row in the colormap is a
color; the first column represents red intensity; the second, green intensity;
and the third, blue intensity.

2. On UNIX systems, the X11 color name database (often stored in /usr/lib/X11/
rgb.txt)

Figure 4-1 Label Locations and Legend
137

MATRIXX 7.0
Xmath User’s Guide
This is a very long list.

3. The list of supported Xmath color names (Table 4-7).

The first eight colors on this list compose the default sequence for line and
marker colors. The first color is black or white (depending on the background
color), followed by red, green, yellow, blue, magenta, cyan, and black or
white.

If you use strings to specify these colors, spacing must be typed as shown, but
case is not important. For example:

plot(x, {bg_color="CADET BLUE",fg_color=51})

4. The list of default (built-in), machine-dependent color names.

As soon as a name match is found in one of the locations above, Xmath looks
at the corresponding values, compares them to values in the current
colormap, and then implements the closest color available in the current
colormap.

To supply your own colormap, construct an n×3 matrix with values representing
red, green, and blue intensity ranging from 0 to 1. Before installing your color
map, it’s a good idea to save the default color map:

mapDefault=plot({colormap})

This saves the colormap to the variable mapDefault.

To replace the current colormap with your own mapMyColors, type:

plot({colormap=mapMyColors})

Your colormap now appears in the Xmath Palette as the current colormap.

For more on colormaps, see the MATRIXX online Help listings for Color List,
Colormaps, and Color.

Table 4-7 String Color Names for Xmath Supported Colors

No. Name No. Name No. Name

1 "black" 22 "chris cyan" 43 "aliki aqua"

2 "red" 23 "periwinkle" 44 "cyan"

3 "green" 24 "prussian blue" 45 "cerulean"

4 "yellow" 25 "cadet blue" 46 "big blue"
138

4

4
Graphics
The following keywords dictate color changes for different plot elements:

■ bg_color

■ edge_color

■ face_color

■ fg_color

■ grid_color

■ light_color

5 "blue" 26 "kam blue" 47 "lapis"

6 "magenta" 27 "royal purple" 48 "blue"

7 "cyan" 28 "red violet" 49 "marine blue"

8 "white" 29 "mulberry" 50 "violet"

9 "silly putty" 30 "orchid" 51 "mark magenta"

10 "peach" 31 "maroon" 52 "purple"

11 "salmon" 32 "strawberry" 53 "fuchsia"

12 "brick" 33 "fire engine red" 54 "berry"

13 "kin orange" 34 "orange" 55 "raspberry ron"

14 "burnt umber" 35 "pumpkin" 56 "red"

15 "brown" 36 "golden dawn" 57 "black"

16 "coffee" 37 "yellow" 58 "gray5"

17 "mustard" 38 "lemon yellow" 59 "gray4"

18 "neon green" 39 "light green" 60 "gray3"

19 "forest green" 40 "algae" 61 "gray2"

20 "teal" 41 "grant green" 62 "gray1"

21 "ocean green" 42 "new grass" 63 "gray0"

64 "white"

Table 4-7 String Color Names for Xmath Supported Colors (Continued)

No. Name No. Name No. Name
139

MATRIXX 7.0
Xmath User’s Guide
■ line_color

■ marker_color

■ text_color

The meanings of these keywords are discussed elsewhere within the keyword
functional groups.

4.3.3 Line and Marker Specifications for Data

You can change the color, style, and width for lines (for example, curves) of data
as specified in Table 4-8. If you make changes to lines and specify the legend
keyword, your changes are reflected in the legend.

 Table 4-8 Line Specification Keywords

Keyword Description

line Boolean that turns line plotting on or off. Default=1.

line_color Integer, string, vector of integers, or vector of strings for specifying data
line colors (see 4.3.2 Colors, p.137). If line_color specifies a vector, the
given color sequence is cycled through. On color monitors for plots
with multiple curves, Xmath automatically assigns each curve a
different color.

line_width Any float is accepted. The variety of line widths allowed is machine
dependent; if you specify a value the machine can’t provide, it supplies
the closest thing. The default value of 1 is approximately equal to 1 pixel
on your monitor. On a high resolution monitor, the difference between
.5 and 1 may be visible; on others the output might be the same.

line_style Integer, vector of integers, string, or vector of strings that specify line
styles for each curve on the graph. The line_style mapping is:

Integer String
0 " "
1 "----"
2 "- - "
3 "...."
4 "-.-."
5 "-..-"
6 "-..."
7 "-- --"

If line_style is set to a vector of integers, strings, or names, Xmath
cycles through the specified sequence of styles.
140

4

4
Graphics
The following example generates several line styles and widths; the plot appears
in Figure 4-2:

v=[0:2/7:20]';vc=v.*cos(v);
x=[vc,vc*2,vc*4,vc*6];
plot (x,{legend, line_width=[8,6,4,2],line_style=[4,3,2,1],

line_color=["peach","teal","lapis","purple"]})

Markers, as described in Table 4-9 are symbols plotted at each data point. You can
change a marker ’s size, style, or color using integers, floats, or strings the same as
you do with line styles. To see a plot with only markers, use the keywords
{!line,marker}.

Figure 4-2 Line Styles and Widths

Table 4-9 Marker Specification Keywords

Keyword Description

marker Boolean that turns on/off plot markers. Default=0.

marker_color Integer, vector of integers, string, or vector of strings that specifies
marker color (see 4.3.2 Colors, p.137). You can specify an integer or
string for each curve on a graph. If a vector is specified, the color
sequence is cycled through.
141

MATRIXX 7.0
Xmath User’s Guide
You can use a combination of line styles and markers to expand the number of
unique lines you can plot. This is especially valuable for those using black-and-
white monitors or for complicated plots that will be printed in black and white.

a=1:9; b=ones(9,9);for i=1:9; b(i,:)=a;endfor
plot({!grid,!x_axis,y_inc=1,axisfix,hold})

plot(b,{columns=2,
line_width=[.5, 1, 2, 3.5, 4, 5.5, 6.5, 7, 7.5]})?

g=plot(b,{keep,column=2,!line,marker_size=[.25, .5,
.75, 1, 1.5, 2.25, 2.25, 2.5, 2.75]})

plot({reset})

The final result, Figure 4-3, shows some of the line and marker styles in a variety
of widths and sizes. Normally hold and axisfix need to be turned off with !hold
and !axisfix, but plot({reset}), which resets everything, is used in this example.

marker_size Any nonzero float is accepted. The range of marker sizes allowed is
machine-dependent; if you specify a value the machine can’t
provide it will supply the closest thing. The default value is 0.5.

marker_style Integer, vector of integers, string, or vector of strings that specifies
marker style for each curve on the graph.
The marker style mapping is:

Integer String Style
0 " " no markers
1 "*" asterisks
2 "x" x’s
3 "+" crosses
4 "o" circles
5 "(*)" filled circles
6 "[]" squares
7 "[*]" filled squares
8 "/\\" triangles
9 "/*\\" filled triangles

The default marker style is 1. If a vector of marker styles is specified,
they will be cycled through.

Table 4-9 Marker Specification Keywords (Continued)

Keyword Description
142

4

4
Graphics
4.3.4 Multiple Graphs and Graph Positioning

The keywords shown in Table 4-10 allow you to place more than one plot in the
Xmath Graphics window. If you are displaying multiple graphs, you can ensure
that they are the same size by dividing the window into rows and/or columns
and then positioning the graphs with row and column coordinates or graph
number. You cannot rotate or zoom plots with multiple graphs interactively.

Figure 4-3 Line and Marker Styles with Varying Widths and Sizes

Table 4-10 Graph Specification Keyword

Keyword Description

column Integer specifying the column position of the graph. Default=1.

columns Integer specifying how many columns the plot window is divided
into. Default=1.

row Integer specifying the row position of the graph. Default=1.
143

MATRIXX 7.0
Xmath User’s Guide
Note that the keywords row, rows, column, and columns all default to 1.
Therefore, you needn’t specify row=1 or column=1 because Xmath attempts to
place graphs in these locations by default. The keywords rows and columns are
initiators. If they are used in a plot() call, the row/column setting remains in effect
for subsequent plots that use the keywords row, column, or graph_number. If a
plot is called that does not contain row, column, or graph_number, the default
format ({rows=1,columns=1}) is reset.

The following example places six graphs in the window; the final plot appears in
Figure 4-4.

v=[0:.25:20]';
vc=v.*cos(v);
x=[vc,vc*2,vc*4,vc*6,vc*8,vc*10];
g=plot (x,{rows=2,columns=3}) #assume row 1 col 1
g=plot (vc*2,{keep=g,column=2}); #assume column=1
g=plot (vc*4,{keep=g,column=3}); #assume row=1
g=plot (vc*6,{keep=g,graph_number=4});
g=plot (vc*8,{keep=g,graph_number=5});
g=plot (vc*10,{keep=g,graph_number=6})?

rows Integer specifying how many rows the plot window will be
divided into. Default=1.

graph_number Integer specifying alternate representation for row and column in
a multi-graph plot. For rows=m and columns=n, the “cells” are
numbered from 1 to m ¥ n going across the rows and then down
the columns. Thus, for rows=2 and columns=2,
graph_number=3 is equivalent to row=2, column=1.

Table 4-10 Graph Specification Keyword (Continued)

Keyword Description
144

4

4
Graphics
4.3.5 Adding New Data to Existing Plots (keep, copy)

Xmath has two ways of storing the image in the Xmath Graphics window in a
variable. The keywords keep and copy described in Table 4-11 both use the
contents of the Xmath Graphics window, but they may affect previously saved
variables differently.

Keep combines the attributes and data from your current plot call with the current
contents of the Xmath Graphics window and updates the variable. Keep is best
used when you are building a plot by overlaying data or adding attributes to an
existing plot. Because keep uses whatever is in the Xmath Graphics window, Xmath
keeps changes you make with interactive tools automatically.

If you create a graph object g1 and later create a graph object g3 that keeps g1, a
common incorrect perception is that g1 has the old view and g3, the new. In
reality, both variables point to the same graph object. You can test this as follows:

v=[1:.25:30]';vs=abs(v.*sin(v));vm=vs*vs';
g1=plot(vs,v)

g2=plot(vs(1:30),vs(1:30),vm(61:90,61:90))

Figure 4-4 Plots Placed with row, column, and graph_number Keywords
145

MATRIXX 7.0
Xmath User’s Guide
g3=plot({keep=g1,log})

g1

where g1 and g3 are the same.

As long as the data dimensions allow it, Xmath performs any keep you specify.
For example, you can combine a 2D and 3D plot. The following example uses the
keep keyword to specify a 2D plot and provides the 3D information internally:

plot(vs(1:30),vs(1:30),vm(61:90,61:90),{!grid,keep=g3,
ylab="The Y label",xlab="The X label",
zlab="The Z Label"})

If you want to re-use a graph object but you don’t want it to be altered, use the
keyword copy instead of keep (see Table 4-11 for these keyword descriptions). For
example, g1 and g2 remain different in this case:

g2=plot({copy=g1,legend})

g1

Copying is computationally expensive, but it means you can save each stage
when building a plot.

 Table 4-11 Data Keywords

Keyword Description

keep Specifies that the current plot should be added to the specified graph
object. If no graph object is specified, the plot is combined with the
current contents of the Xmath Graphics window. If the graphs are
incompatible, the new plot overwrites the Xmath Graphics window.

keepsubplot Boolean. Used with keep when adding or replacing data on a subplot.
keepsubplot indicates that new data should be laid over the existing
data on the subplot. !keepsubplot indicates that the subplot should
contain only the new data. Default is 1.

copy copy can be specified with a graph object argument {copy =
GraphObj}; if no graph object is specified, the plot is combined with
the current contents of the Xmath Graphics window. copy differs
from keep in that copy does not alter the original graph object. In this
case, the new data and graph keywords are combined with a copy of
the existing graph object. The combined graph object is returned,
while the copied graph object remains unchanged.
146

4

4
Graphics
Figure 4-5 shows an example created by combining graph objects through the
sequence of inputs below. By default, if graph objects with different data ranges
are combined, Xmath rescales the plot to accommodate all the data. As you create
each plot below, notice how the axes change to accommodate the new data with
each curve addition.

v=[0:.25:20]; vc=v.*cos(v);vs=v.*sin(v);
plot({title="You can add to a graph as you work!"})?

plot(vc,{keep})?

plot(vs,{keep})?

plot(-vc,{keep})?

plot(-vs,{keep})?

g=plot({keep,!grid,legend=[" vc"," vs","-vc","-vs"]})?

If you do not want the plots rescaled, you must specify one of the axisfix
keywords (see Table 4-12).

Figure 4-5 Combination of Graph Objects
147

MATRIXX 7.0
Xmath User’s Guide
4.3.6 Axis and Zero Lines

The keywords described in Table 4-12 control axis and zero-line display.

The following call produces the zero lines and axes for 2D and 3D plots shown in
Figure 4-6. This demonstrates axis and zero lines in 2D and 3D plots.

plot(sin(-5:.2:5),{columns=3,!grid,
title="2D Axis Lines and Zero Lines"})

plot(0,0,0,{column=2,!axis,title="3D Zero Lines"})
plot(0,0,0,{column=3,!zero_line,title="3D Axis Lines"})?

Table 4-12 Axis and Zero Line Keywords

Keyword Description

axis Boolean that turns on or off all axis graphics on the entire graph. This
includes grids, zero lines, tic marks, and tic labels. If an attribute is
specified, it is applied to all axis graphics.

x_axis
y_axis
z_axis

Booleans that toggle all axis graphics on the x, y, or z axis.

Axis graphics color, style, and width attributes affect all components
on the named axis.

axisfix
x_axisfix
y_axisfix
z_axisfix

Booleans that toggles automatic axis scaling when graph objects are
combined. Default=0 (autoscaling on). If axisfix=1, axis limits are
those of the kept graph object.

axis_line Boolean that toggles lines for all axes. Default=1.

x_axis_line
y_axis_line
z_axis_line

Booleans that toggle axis line for the x, y, or z axis, respectively.
Default=1.

zero_line Boolean that toggles zero lines on all axes. Default=0.

x_zero_line
y_zero_line
z_zero_line

Booleans that toggle zero lines on the x, y, or z axis, respectively.
Default=0.
148

4

4
Graphics
4.3.7 Tics and Grids

Tics and grids appear by default on all plots. You can suppress these features on
one or more axes. Table 4-13 describes the keywords grid, tic, and tic_lab which
are especially useful because they control all axes.

Figure 4-6 Zero Lines and Axes for 2D and 3D Plots

Table 4-13 Tic and Grid Keywords

Keyword Description

tic Boolean that toggles tic marks on all axes. Default=1.

tic_maj Boolean that toggles major tic marks on all axes. Default=1.

tic_min Boolean that toggles minor tic marks on all axes. Default=0.

x_tic
y_tic
z_tic

Booleans that toggle tic marks on the x, y, or z axis, respectively.
Default=1.
149

MATRIXX 7.0
Xmath User’s Guide
The following instructions produce the changing tic and grid setting shown in
Figure 4-7.

v=[[1:.15:15],[15:-.15:1]];
vc=[v.*cos(v)];vs=[v.*sin(v)];
vc5=vc.*.[2;2.5;2.75;2.5;2];
vs5=vs.*.[1;1.5;2;1.75;1.25];
plot(-vc5,vc5,vs5,{yinc=30,xinc=15,!zgrid})

x_inc
y_inc
z_inc

Integers specifying the major tic increment for the x, y, or z axis,
respectively.

tic_lab Boolean that toggles tic mark numbering on all axes. Default=1.

x_tic_lab
y_tic_lab
z_tic_lab

Booleans that toggle tic mark numbering on the x, y, or z axis,
respectively. Default=1.

grid Boolean that toggles all grids. Default=1.

grid_color
grid_style
grid_width

Grid color, style, and width attributes can be changed for the entire
graph. Colors are specified as described starting on p.137. Line styles
and widths are specified as described on p.140.

x_grid
y_grid
z_grid

Booleans that toggle the x, y, or z grid, respectively. Default=1.

Table 4-13 Tic and Grid Keywords (Continued)

Keyword Description
150

4

4
Graphics
4.3.8 Free Text and Global Text Settings

The text keyword places a single string onto the plot. You can alter the angle,
color, font, position, size, and style of the string with keywords (see Table 4-14).

The text keyword loosely corresponds to the interactive free text feature. If you
want to add more than one text string to a plot or show a variety of text styles,
you can work on the plot interactively or combine several plots with the keep
keyword. Text keywords do not affect text associated with the data, such as labels
and titles. You can change these interactively, or, in the case of labels, with
keywords.

Figure 4-7 Changing Tic and Grid Settings
151

MATRIXX 7.0
Xmath User’s Guide
 Table 4-14 Free Text and Global Text Keywords

Keyword Description

text String containing the text to be written on the plot.

text_angle Vector of three float numbers [x,y,z] specifying the angle of the
text’s clockwise rotation about the axis.

text_font Integer or a string from the following:

Integer String
1 "simplex"
2 "duplex"
3 "triplex"
4 "complex"
5 "script"
6 "greek"
7 "times"
8 "helvetica"
9 "courier"

Fonts 1 through 6 are Hershey fonts, while fonts 7, 8, and 9 are
PostScript fonts. The default font (font=8) is Helvetica.

If your platform is not be able to create the font you want in the
size you want, it attempts to supply the closest thing.

text_color Integer or string indicating the color name. Specifies the color for
all text in the graph. Default="black". See p.138.

text_position Vector of two float numbers [x,y] used to place a line of text
anywhere in the Xmath Graphics window. The upper left corner of
the text line is placed at the specified position. When first drawn, a
plot extends from -1 to +1. Note that any float is acceptable, so it is
possible to position the text outside the viewport. If you do, it may
seem as though the string was not created; you must zoom out to
view the text. Default= [0,0].

text_size Floating-point number specifying the size in points. One point is
about 1/72 inches.

text_style Integer or string indicating the text style:

Integer Font
1 "plain"
2 "bold"
3 "italic"
4 "bold italic"

Default is 1 (plain).
152

4

4
Graphics
The following example uses text keywords; it produces the plot shown in
Figure 4-8. Note that text_position and position work on the same principle.

v=[0:.5:25]'; vc=v.*cos(v); vs=v.*sin(v); vm=vs*vc'; plot(v,v,vm)
plot({keep, scale=[.9,.9],position=[-.4,0],

x_inc=5,y_inc=10,
text="Text is placed with "ntextposition"+...
""n and textangle.",
text_font=3,text_size=14,
text_angle=[0,0,30],
text_position=[.1,-.7]})

4.3.9 Axis Limits and Logarithmic Scaling

You can change the actual scaling of the data (to log scale, for example). You can
also specify the minimum and/or maximum range of data you want to see on any
dimension (see Table 4-15 for the pertinent keyword descriptions).

Figure 4-8 Text Changes and Text String Placement
153

MATRIXX 7.0
Xmath User’s Guide
You can make an axis go backward by making the value of xmin greater than
xmax as illustrated in the following example:

x=exp(.5:0.15:5);
plot(x,{x_log,rows=3,xmax=32})
plot(x,{keep,row=2,y_log,ymax=150})
plot(x,{keep,row=3,xmin=35,xmax=1,title="Reversed Scaling"})

The results appear in Figure 4-9.

Table 4-15 Axis Limits and Logarithmic Scaling Words

Keyword Description

log Turn on/off log scaling for all axes.

Default=0.

x_log
y_log
z_log

Turn on/off log scaling for the specified axis. Default=0.

x_min
y_min
z_min

Integer indicating the minimum for the x, y, or z axis, respectively.

x_max
y_max
z_max

Integer indicating the maximum for the x, y, or z axis, respectively.

x_inc
y_inc
z_inc

Integer indicating the increment for the x, y, or z axis, respectively.

For logarithmic axes, this value becomes multiplicative. This means that if
the integer is greater than 1, it increases by multiples, and if it is less than 1,
it decreases by multiples. So if x_inc=10, tic values are 1,10,100, etc. If
x_inc=0.1, values are 1, 0.1, .01, etc.
154

4

4
Graphics
4.3.10 Animate

The animate keyword allows you to plot new data without redrawing other parts
of the plot. It is a Boolean used to show changes in data as quickly as possible for
an animation effect between successive plots. Default=0.

The following example plots a series of curves on the same axes. The first plot sets
the dimensions of the plot; the second plot holds the dimensions of the first and
specifies that only the data will be redrawn each time. The curves are plotted

Figure 4-9 Axis Maximums and Minimums
155

MATRIXX 7.0
Xmath User’s Guide
within a loop and then animate is turned off. Alternatively, plot({reset}) could be
used to restore the original settings.

a=[0:20/75:20];a=a.*cos(a);
b=[10:-10/75:0];b=b.*sin(b); c=[a,b];
plot ({animate,ymin=-85,ymax=85,xmax=150});
for i=[[1:.25:5],[5:-.25:100]];
plot(c*i,{linestyle=1})?
endfor
plot({!animate})

4.3.11 Placement, Scaling, and Rotation

The placement, scaling, and rotation keywords operate on a graph as a whole (see
Table 4-16 for descriptions). This means scale changes reduce or enlarge the entire
graph, including labels, and so forth. The keywords, rotate, projection, and
position, also operate on an entire graph. You can use these keywords when
plotting a single graph or multiple graphs (4.3.4 Multiple Graphs and Graph
Positioning, p.143).

Table 4-16 Placement, Scaling, and Rotation Keywords

Keyword Description

scale Vector of two float numbers [x,y]. Each float indicates the amount of
compression (float < 1) or expansion (float >1) on the relevant x or y
Xmath Graphics window coordinate. Default is [1,1].

rotate Vector of three float numbers [x,y,z] specifying the angle in degrees of a
3D plot’s rotation. Assumes a right-hand coordinate system, based on
the Xmath Graphics window axes (not the object coordinates).
Rotations are performed counter-clockwise, first about the x-axis, then
about the y-axis, then about the z-axis. Because this rotation is based on
window coordinates (the current view), it may be simpler to rotate one
axis at a time.

projection String equal to one of the following string values:

"stretched"

Stretches the graph so that it fills as much of the plotting area as
possible. This is the default projection for 2D graphs.

"orthographic"

Indicates a coscaled setting such that unit distances on all axes are
equal. This is the default projection for 3D graphs.
156

4

4
Graphics
The following example uses scaling, rotation, and projection, and the
text_position keyword, which works much the same as position does. This
example creates the projection shown in Figure 4-10.

x=[-2*pi:0.35:2*pi]';
x=[x;x];y=(x); z=sin(round(x))./x*(sin(y)./y)';

v=[0:.5:20]';vs=v.*sin(v);vm=vs*vs';
plot (x,y,z,{columns=2,scale=[1,.9],rotate=[-20,0,0],
projection="stretched"})?

g=plot (x,y,z,{keep,column=2,projection="orthographic",
text="Stretched and Orthographic Projections",
text_position=[-.35,-.9]})?

move Vector of two float numbers [x,y] specifying the distance (in Xmath
Graphics window coordinates) to move the object from its current
position. [-1,-1] is the lower left corner, [1,1] is the upper right corner,
and [0,0] is the center of the window.

position Vector of two float numbers [x,y] specifying the Xmath Graphics
window coordinates of the center of the graph object. Default is [0,0]
(the middle of the window). [-1,-1] is the lower left corner, and [1,1] is
the upper right corner.

Table 4-16 Placement, Scaling, and Rotation Keywords (Continued)

Keyword Description
157

MATRIXX 7.0
Xmath User’s Guide
4.3.12 Background, Edge, and Face Settings

Figure 4-10 Stretched and Orthographic Projections

Table 4-17 Background, Edge, and Face Setting Keywords

Keyword Description

bg_color
fg_color

Specifies the Xmath Graphics window background or foreground
color. Accepts an integer or a string (see p.138).

face Boolean that turns surface filling on 3D surfaces or bar plots on or off.
Default=1.
158

4

4
Graphics
face_style Changes the style on all faces. Specify an integer corresponding to the
desired style from the following list:

Integer Face Style
0 none (default)
1 solid
2 cross-hatched pattern
3 vertical-line
4 horizontal-line pattern
5 left-slanting diagonal pattern
6 right-slanting diagonal pattern
7 dotted pattern
8 diamond pattern
9 square pattern

NOTE: For black and white monitors, the face styles are only shown if
the face color is black or white. If you specify a shade of gray
and a face style, you only get gray.

face_color Specifies the color of 3D surfaces based on the z data values.
Acceptable inputs are an integer, a vector of integers, a string, or a
vector of strings (see p.138). If you specify a vector, Xmath cycles
through the given sequence.

edge Toggles the display of web lines on 3D surfaces or bar plots. Default=1.

edge_color Specifies the color of the web lines on 3D surfaces or bar plots.

Acceptable inputs are an integer, a vector of integers, a string, or a
vector of strings (p.138). If you specify a vector, Xmath cycles through
the given sequence.

edge_style Sets the style of all web lines. This keyword accepts an integer or a
string equivalent indicating the border line type.
Default=1 (a solid line). Allowed values are:

Integer String
0 " "
1 "----"
2 "- -"
3 "...."
4 "-.-."

edge_width Sets the width of all web lines. This keyword, like line_width, accepts
any floating point number.

Table 4-17 Background, Edge, and Face Setting Keywords (Continued)

Keyword Description
159

MATRIXX 7.0
Xmath User’s Guide
The following example displays a variety of edge and face specifications.

x=logspace(1,180,90);y=logspace(90,270,90);
z=45:134;
a=[-x;x;-x;x];b=[y;-y;-y;y];c=([z;z;z;z]);

plot(a,b,c,{edge_width=2,
face_style=7,!grid,!axis,bg_color="gold",
edge_color="black",face_color="cyan"})

The graph appears in Figure 4-11.

4.3.13 Lighting Source Settings

Figure 4-11 Edge and Face Styles

Table 4-18 Lighting Source Setting Keywords

Keywords Description

light Boolean that turns light source on or off. Default=0.

light_color Integer (color number) or string (color name) specifying light
source color. Default="white".

light_direction Vector of three real numbers [x,y,z] indicating the direction in
which the light travels. Light source location is assumed to be
infinitely far away. The default path vector is [1,-1,3].
160

4

4
Graphics
Setting light= 1 for the plot shown in Figure 4-11 produces a very different graph
(see Figure 4-12)

4.3.14 Reusing plot Attributes

Hold Keyword

Figure 4-12 Edge and Face Styles with Light Added

Table 4-19 Holding Graph Attributes

Keyword Description

hold Boolean. When {hold} is used with other keywords it makes them
‘permanent’, applying them to all future graphs until hold is terminated
with plot({!hold}). Note that {!hold} removes keywords specified by the
most recent hold. When you invoke hold in numerous plot calls, a hold
stack is formed. You can specify a negative integer as an argument to hold
({hold =-n}) to remove the last n hold invocations from the hold stack. Use
plot({reset}) to clear the entire hold stack. (Default=0)

reset Resets plot options to their startup values. Use this keyword alone, that is,
plot({reset}).
161

MATRIXX 7.0
Xmath User’s Guide
You can use plot attributes, such as line widths, the legend, and titles, with the
hold keyword, but you cannot use plot types (strip, bar, contour, and polar) with
hold. When you use an attribute with the hold keyword, it replaces the current
default. The following example uses the hold stack:

v=[0:.3:20]';vs=v.*sin(v);
plot(v,vs,{hold, time, date, legend,

title="Top Secret Project", scale=[1,.95]})

plot([-vs,-vs],[v,v],{hold,scale=[1,.95]})

plot(v+12,vs,{!hold})

plot([-vs,vs],{!hold})

You can see the results of each of these four plots in Figure 4-13 and Figure 4-14.
162

4

4
Graphics
Figure 4-13 Results of First and Second plot Commands Using hold
163

MATRIXX 7.0
Xmath User’s Guide
Figure 4-14 Results of the Third and Fourth plot Commands Using !hold
164

4

4
Graphics
Using an Alias in the Keyword String

Another way to reuse plot attributes is to create an alias. You can then use the
alias in the keyword string. An advantage of using an alias is that the defaults are
not affected. You can store the aliases you use frequently in your startup.ms file.

You can obtain the results we achieved with the hold keyword with an alias:

alias XX time,date, title="Top Secret Project",scale=[1,.95], legend
plot([-vs,vs],{XX})

This example reproduces the fourth plot command above (see Figure 4-14).

4.3.15 Strip Plots

The strip keyword is an integer indicating the number of data lines to be plotted
on each strip plot in a given set.

The default is 1; Xmath plots one strip per channel or column of data for up to 10
strips. After 10, strip adds data to the existing strips.

If a value n is specified, Xmath creates strip plots with n data lines per strip plot. If
the number of lines is not evenly divisible by n, the data lines corresponding to
the remainder are lost.

Xmath creates strip charts such that the first data line appears on the first strip
chart, the second appears on the second strip chart, and so on until each strip in
the first cycle has a data line. All the lines in the first cycle have the same line
style. Xmath draws the second cycle of lines with a different line style. You can
interactively modify line styles, colors, markers, and so forth (see Interactive
Xmath Graphics Window on p.171). When you alter a data line, Xmath also changes
all lines in that cycle. Note, however, that changes that do not affect data (for
example, grid lines) are not passed to other strips.

By default, strip plots are laid out as follows:

■ plot(y,{strip=N}) where y is an (m × n) matrix and n is an integer multiple of N.
Strips are arranged as an ((n/N) × 1) matrix of plots. Each strip contains N
graphs.

NOTE: The rows and columns keywords are a special case and cannot be explicitly
used with the hold keyword (see p.144). Because they are initiators, they are
automatically held until a plot call is made that does not contain the row or column
keyword.
165

MATRIXX 7.0
Xmath User’s Guide
■ plot(y,{strip=N}) where y is an (m × n × T) PDM and m is an integer multiple of
N. The results are an ((m/N) × n) plot matrix. (Think of the PDM as a column
vector of blocks.) Each subplot contains N graphs.

■ plot(y,{strip,columns=m,rows=n}) where y is a matrix with N columns and N is
an integer multiple of m × n. This syntax creates an (m × n) plot matrix that is
filled with graphs rowwise. The number of data lines in each subplot is N.
This option is very handy because it precludes having to write a nested loop
to fill in a matrix of plots.

■ plot(y,{strip,columns=m,rows=n}) where y is an (m1 × n1 × T) PDM and m1 ×
n1 is an integer multiple of m × n. The result is identical to that obtained by
plotting makematrix(y) with the same keywords. When used with columns=1,
this syntax specifies a column of strip plots instead of a matrix of strip plots.

To demonstrate strip plots, load the following file:

load "$XMATH/demos/sys.xmd"

This file contains sys, a lightly damped mechanical system that inputs two forces
and outputs two positions. It is discrete, sampling at 1 second. For this example,
we use this data to create a system with a sampling rate of 1 second and named
inputs and outputs:

sysd=system(sys,{dt=1,inputNames=["Force 1";"Force 2"],
outputNames=["Position 1";"Position 2"]});

Obtain a frequency response of the new system.

f = [1:200]/400; gd=freq(sysd,f);

Create a continuous version of this system and create a frequency response for it:

sysc=makecontinuous(sysd); gc=freq(sysc,f);

Plot the continuous and discrete systems.

plot(abs([gd;gc]),
{xlog,ylog,strip=2,legend=["Discrete";"Continuous"],!grid})?

The results of this example appear in Figure 4-15.
166

4

4
Graphics
4.3.16 Bar Plots

The bar keyword is a Boolean used to indicate that the current plot is a bar plot.
Each coordinate is plotted as the center of a bar whose height is the y or z
coordinate. Default=0.

plot(logspace(1,10,13),{bar,face_style=5,!x_grid})

This plot appears in Figure 4-16.

Figure 4-15 Frequency Responses
167

MATRIXX 7.0
Xmath User’s Guide
4.3.17 Contour Plots

A contour plot is a 3D plot that shades portions of the plot based on the z data
values; the effect is like a topographical map. You can use a legend to show which
value ranges correspond to the color or fill pattern shown in the contour plot. If
you specify the keyword face_color and supply a vector of colors, those colors will
be used to shade the data values.

Figure 4-16 Bar Plot

Table 4-20 Contour Plots Keywords

Keywords Description

contour
contour2d

Booleans used to indicate that the current 2D plot is a
contour plot. Requires x, y, and z data. Default=0.

contour3d Boolean used to indicate that the current 3D plot is a
contour plot. Requires x, y, and z data. Default=0.

contour_interval Float value which can be used with contour or contour3d
to determine the intervals of the contour plot. Defaults to
the internally calculated tic label values of the z data.
168

4

4
Graphics
The following instructions produce Figure 4-17:

v=[0:.5:7]';
vc=v.*cos(v); vs=v.*sin(v); vm=vs*vc';
plot(vc,vs,vm,{rows=2,columns=2,contour2d,!grid})
plot(vc,vs,vm,{keep,row=2,contour2d,!grid,

contour_interval=1.3})
plot(vc,vs,vm,{keep,column=2, contour3d,!grid})
plot(vc,vs,vm,{keep,row=2,column=2,contour3d,

!grid,contour_interval=1.3,!z_tic_lab})

4.3.18 Polar Plots

The polar plot option draws a 2D plot on a polar grid. Polar plots require a radius
(magnitude vector) and an angle vector in degrees (theta):

plot(radius,theta,{polar})

Figure 4-17 3D Contours with Different Intervals
169

MATRIXX 7.0
Xmath User’s Guide
The following instructions produce Figure 4-18.

t=[logspace(1,180,32);logspace(90,270,32);
logspace(180,360,32);logspace(360,540,32)];

plot (t,t,{polar,!x_grid,r_inc=90,
theta_inc=10,marker})

Table 4-21 Polar Plot Keywords

Keywords Descriptions

polar Boolean used to make the current 2D plot a polar plot. Default=0.

r_inc Integer specifying the polar radius increment value to be marked on the
vertical axis of the polar plot.

r_max Integer specifying the maximum polar radius to be plotted on a polar
plot.

theta_inc Integer specifying the polar angle increment value to be marked around
the circumference of the polar plot.

theta_min
theta_max

Integer specifying the minimum or maximum polar angle increment to
be marked around the circumference of the polar plot.
170

4

4
Graphics
4.3.19 Clearing the Xmath Graphics Window

To clear the Xmath Graphics window, type ERASE in the Xmath Commands window
command area.

4.4 Interactive Xmath Graphics Window

The Xmath Graphics window displays Xmath plots and other graphics. It is
typically opened and updated whenever plot() (or a function that calls plot(),
such as bode()) is invoked. It provides extensive interactive facilities for building,
modifying, and viewing two-dimensional (2D) and three-dimensional (3D)
graphics. You can specify graph characteristics, such as labels, placement, and

Figure 4-18 Polar Plot
171

MATRIXX 7.0
Xmath User’s Guide
size, as keywords to plot(), or you can add or modify them interactively from the
Xmath Graphics window menus or the Xmath Palette.

Graphs are composed of objects such as lines, labels, markers, and axes. Object
attributes can be prespecified as keywords when the plot command is issued from
the Commands window command area. (Keyword usage is discussed in 4.3 Using
Keywords with plot, p.131.) You can also manipulate an object’s attributes
interactively from the Xmath Graphics window’s menus or toolbar or from the
Xmath Palette. Figure 4-19 shows the graphics environment on UNIX platforms.
172

4

4
Graphics
Figure 4-19 Xmath Graphics Environment (UNIX Platform)
173

MATRIXX 7.0
Xmath User’s Guide
In the example shown in Figure 4-19, the graph originated with a plot() function
call in the Xmath Commands window command area:

v=[0:.1:25]';vc=v.*cos(v);vs=v.*sin(v);
plot(vc,vs)?

plot(-vc,-vs,{keep,!grid,
legend=["positive","negative"],
xlab="Keep allows you to combine graphs.",
title="Use tools to alter or add to a graph."})

Note that two plots were combined using the keep keyword (see p.130).
Graphical additions (the arrows, for example) were created with tools from the
toolbar. New objects (for example, the timestamp and datestamp) were added
from the Options menu in the Xmath Graphics window. The mouse was used to
select and position objects (for example, the legend, timestamp, and the
datestamp).

4.4.1 Working Interactively

The most common approach is to start with a graph and then use interactive tools
to alter it to your satisfaction.

■ To make interactive changes, first click on an object to select it.

Xmath selects the closest object to the mouse-click. When you select text,
round handles appear on the corners of the text box. When you select a line or
curve, it is highlighted and has a thicker appearance.

When you make a selection, the appropriate attributes are enabled for both
the Xmath Palette and the Xmath Graphics window menus. For example, when
the background is selected, the Xmath Palette shows that only the fill patterns
are available (line and marker styles are disabled, and the Fills button is
pushed). If a label is selected, the Font and Point menus become available in
the Xmath Graphics window; in the Xmath Palette, the Text button is pushed. You
can then change the font and point size from the Xmath Graphics window and
select a new color from the Xmath Palette.

■ Place the pointer over an object and drag to move objects.

You can also use pulldown menus to modify and move selected objects, make
global changes (zooming, rotating, and so forth), or add objects (via the Options
menu). Click on an object to select it. When you pull down the menus, only the
items appropriate for the object selected are displayed.
174

4

4
Graphics
4.4.2 Toolbar

The toolbar appears in the Xmath Graphics window by default. This feature
provides quick mouse access to simple graphical drawing tools and the zoom and
rotate tools. To toggle the toolbar off and on, select Options→Icon Bar (UNIX only).
Figure 4-20 shows the toolbar in both UNIX and Windows and shows labels for
each tool.

Selection Arrow

You use the selection arrow to reset the cursor to selection mode after you use a
drawing or text tool.

Text Tool

To use the text tool, click on the Text Tool toolbar button. You receive an I-beam
cursor. Move to the graph area and click. An empty text box appears; you may
start typing. The text box expands as you type. To create a paragraph (continuous

NOTE: Note that not all tools are enabled for all plot types. In general, zooming
and rotation are disabled for all multiple graph plots (such as strip plots).

Figure 4-20 The Toolbar (UNIX and Windows)

S
e
le

ct
io

n
 A

rr
ow

Te
xt

 T
o
o
l

L
in

e
 T

o
o
l

R
e
ct

a
n
g
le

 T
o
ol

E
lli

p
se

 T
o
ol

A
rc

 T
o
o
l

A
rr

ow
 T

oo
l

Z
o
o
m

 I
n
 (

E
n
la

rg
e
)

Z
o
o
m

 O
u
t
(R

e
du

ce
)

R
o
ta

te
 A

ll
A

xe
s

R
o
ta

te
 a

b
o
u
t
X

-A
xi

s

R
o
ta

te
 a

b
o
u
t
Y-

A
xi

s

R
o
ta

te
 a

bo
u
t
Z

-A
xi

s

175

MATRIXX 7.0
Xmath User’s Guide
lines of text) press Return and keep typing. To start a new string, click in a different
place. To turn off the text tool, click the selection arrow or another tool.

The key commands described in Editing Text by Selecting, Copying, and Pasting on
p.20 are also active in the text box. Note that the font and size in the text box are
not what is displayed in the graph. Figure 4-21 demonstrates this in the center text
piece. To edit existing text, click the Text Tool toolbar button, and then click in the
text; the text box reappears. Note that the changes you make are not displayed
until you click the selection arrow (or another tool).

To format text, select it, and then choose a font style and point size from the Font
and Size menus on the Xmath Palette; you can also enable checkboxes for bold and
italic font. To change text color, select the text, and then select a color from the
Xmath Palette. Figure 4-21 shows reversed text created with a text string and a
graphical object.

Drawing Tools

The line tool, rectangle tool, ellipse tool, arc tool, and arrow tool are primitive
drawing tools that allow you to draw in the Xmath Graphics window. When you

Figure 4-21 Using the Text Tool and the Xmath Palette
176

4

4
Graphics
use drawing tools, they remain active until you choose the selection arrow or
another tool. To use a tool, click on the desired toolbar button; a crosshairs cursor
appears. Press down MB1 and drag until the desired shape is formed; then release
MB1.

Zoom In/Zoom Out

To zoom in on a graph, click the toolbar button with the larger image on the left.
Position the mouse over your plot; then click and drag to create a box around all
or a portion of the graph; the area captured in your box is enlarged to fill the
Xmath Graphics window. Every time you zoom in, the previous view is saved on a
stack.

You can use Zoom Out toolbar button (the toolbar button with the smaller image)
to undo a series of enlargements. If you zoom out when you are at the default
view, the graph is reduced by approximately 10%.

The zoom feature is disabled for multiple graph plots.

Rotation Tools

Rotation is only allowed with 3D plots and other contour plots. The first rotation
tool allows rotation on all axes. The other tools are constrained to rotate only in
the directions indicated by the arrows. Select a tool, and then move the cursor to
the plot area. Press down MB1, and slowly drag the cursor in the direction
allowed. The data disappears and you see the plot axes turning in response to
your mouse movement; when the axes are in the position you wish to view the
plot, release MB1, and the data is redrawn. To return to the original graph, select
View→Reset.

Consider the following example:

x = [0:10];
y = [0:10];
z = [0:10];
graph = plot(x,y,z, {marker=1, x_lab="X", y_lab="Y", Z-lab="Z"})

The default plot appears in Figure 4-22; this 3D vector is projected in such a way
that it isn’t particularly useful.

NOTE: You cannot resize or reshape the polygons you create because these are
primitive tools.
177

MATRIXX 7.0
Xmath User’s Guide
Using the rotation toolbar buttons, you can rotate this plot in almost an infinite
number of ways. Figure 4-23 shows one rotated view, which gives more
information that the default plot.

Figure 4-22 Default View of 3D Vector
178

4

4
Graphics
4.4.3 Menus

This section discusses the menus that are available in the Xmath Graphics window.

File

Bind to Variable — Saves the current Xmath Graphics window image as a variable
that you specify. You can redisplay the plot at a later time by typing the
variable name, or you can reuse the graph in another plot by using the keep
keyword.

Figure 4-23 Rotated View of 3D Vector
179

MATRIXX 7.0
Xmath User’s Guide
Print — Raises the Print dialog (UNIX version shown below), which allows you to
send the image in the current Xmath Graphics window to a printer. The UNIX
Print dialog allows you to save a graphics file in PS (PostScript), EPS, HPGL,
PICT, CGM-ANS, CGM-CAL, or CGM-TXT format.

For UNIX, the default printer shown in the Print Command field is set at the
operating system level. The default line printer for your system is assumed.
The system’s default print command is set using the environment variables
XMATH_PRINT and PRINTER. XMATH_PRINT defines the default print
utility, while PRINTER defines the default printer.

On Windows operating systems, this command raises the standard Windows
Print dialog from which you can also print to a file.
180

4

4
Graphics
For all systems, you can print from the Xmath command area using the
HARDCOPY command (see the MATRIXX online Help HARDCOPY topic for
details).

Iconify Window — Lower the Xmath Graphics window.

Close Window — Kill the Xmath Graphics window.

Edit

Cut — Delete the selected object.

Move Up, Down, Left, Right — Move the selected object. Distance will be 1-2 pixels,
depending on the size of the window.

Bring to Front — Bring the selected object to the front.

View

Reset — Reset to the original graph.

Projection — Change the projection for the current graph. In stretched projection
(the default for 2D plots), the plot is scaled to occupy the maximum amount
of available space. For orthographic projection (the default for 3D plots), all
axes are coscaled to have the same unit length (a circle will look round and a
cube will look like a cube, not a shoe box).

Lights — Toggle lights on/off.

Options

Timestamp — Add the timestamp to the graph. The timestamp appears in
hour:minutes:second format and is positioned by default in the upper left corner
of the graph. You can select it and then change the text attributes or move it.
To remove the timestamp, select it then use Ctrl-x.

NOTE: These commands work only for objects that you place on the graphic
interactively or with keywords such as legend, date, time, and so forth.
181

MATRIXX 7.0
Xmath User’s Guide
Datestamp — Adds the datestamp to the graph. The date stamp appears in the
day:month:date:year format and is positioned by default in the upper left corner
of the graph. You can select it and then change the text attributes or move it.
To remove the datestamp, select it, and then use Ctrl-x.

Legend — Toggle the legend on/off.

Icon Bar — Toggle the toolbar on/off (UNIX only).

Font (UNIX Only)

This menu is only available if text is selected in the Xmath Graphics window.
PostScript fonts available are Times, Helvetica, and Courier. Stroke fonts available
are Simplex, Duplex, Triplex, Complex, Script, and Greek.

Point (UNIX Only)

This menu is only available if text is selected in the Xmath Graphics window. Point
sizes are 6, 9, 10, 12, 14, 18, 24, 36, and 48. You can also choose the font style: plain,
bold, italic, or bold italic.

Tools (Windows Only)

You can use this menu to duplicate all the functions on the toolbar. Select the
menu item rather than the toolbar button to perform the same function (see
4.4.2 Toolbar, p.175).

NOTE: Your machine might not be able to display all fonts in all sizes listed in the
Point menu; the same is true for printer output. In either case, the device produces
the font it can manage.

NOTE: Your machine might not be able to display all fonts in all sizes; the same is
true for printer output. In either case, the device produces the font in the closest
size it can manage.
182

4

4
Graphics
Windows

This menu allows you to bring other Xmath windows to the front quickly. Of
special note is the Palette, which is used to make interactive changes to graphic
objects.

4.4.4 Xmath Palette

Xmath provides another window from which you can work interactively.

To bring up the Xmath Palette:

Click Windows→Palette in the Xmath Graphics window.

The Xmath Palette comes on view. The UNIX version looks a little different
from the Windows version, but the functions are essentially the same. The
default UNIX version appears in Figure 4-19, p.173. You can also select colors
via a color wheel on the UNIX version; this view of the Xmath Palette appears
in Figure 4-24, as well as the Windows version of the window.
183

MATRIXX 7.0
Xmath User’s Guide
To use the Xmath Palette:

1. Select an object in the Xmath Graphics window.

The object type appears at the top of the Xmath Palette in the title bar.

The radio button for the active option—Lines, Markers, Fills, or Text—is pushed.
All items that are available for the selected item are active, whereas others are
inactive in the window.

Figure 4-24 Xmath Palette: UNIX and Windows Versions
184

4

4
Graphics
2. Click the radio button for the option that you wish to change: Lines, Markers,
Fills, or Text.

3. Make the desired changes for this option.

You can control the color of all attributes. You can turn lines, markers, and fills
off or choose the type of each. For lines and markers, you can also choose the
width. For text you have a choice of fonts, sizes, plain, bold, italic, or bold
italic style. The text choices mimic the options available through the Font and
Point menus in the Xmath Graphics window in UNIX.

4. Modify as many attributes for as many objects as you want, and the click
Close to close the window.
185

MATRIXX 7.0
Xmath User’s Guide
186

5

Data Objects and Operators
This chapter provides a conceptual overview and detailed descriptions of Xmath
data objects and operators.

5.1 Data Hierarchy

Xmath data hierarchy, as shown in Figure 5-1, is divided into numeric and
nonnumeric branches.

The matrix, for example, is general. It consists of matrices of various shapes. The
square matrix is a specific kind of matrix that requires an equal number of rows
and columns, but otherwise inherits the characteristics of the matrix. A scalar is a
special kind of square matrix with dimensions of 1 × 1. A scalar is also defined as
a special kind of vector, because it is a vector with a length of 1.
187

MATRIXX 7.0
Xmath User’s Guide
Xmath’s object-based structure provides three significant benefits:

simplified data management — As variables in Xmath can represent complex
groupings of data, you don’t have to track numerous variables. For example,
with a state-space system using system(A,B,C,D), all the data (including input
names, output names, etc.) is stored in a single variable. The matrices can be
deleted.

optimized performance — Many Xmath data objects were designed to take
advantage of optimized algorithms. This is especially true of the specialized
matrices. The eigenvalues of a symmetric matrix, for example, can be found

Figure 5-1 Object Relationships

Variable

Non-Numeric

scalar

triangular

Hessenberg

diagonal

identity

symmetric

Square

PDM

Transfer
Function

State-SpaceIndex List

Matrix

Numeric

Vector

regular
vector

Polynomial

logspaced
vector

Toeplitz

String
Dynamic
 System ListGraphic
188

5

5
Data Objects and Operators
more quickly with a symmetric eigensolver rather than a general eigensolver.
Xmath recognizes the special properties of a matrix and uses the appropriate,
optimized algorithm.

natural syntax — Because Xmath recognizes the special properties of each type of
data object, operations are intuitive. For example, it is more natural to
multiply two polynomials by typing p1*p2 than it is to call convolve(p1,p2).

5.1.1 Data Object Descriptions

This chapter describes Xmath data objects in the following order:

■ Matrix

■ Polynomial

■ Parameter-dependent matrix (PDM)

■ Dynamic system

■ String

■ List

Some of the categories are subdivided. For example, dynamic systems include
state-space systems and transfer functions, and matrices include the following:

■ Vector

● Regular vector

● Logspaced vector

■ Square

● Symmetric, Diagonal, Identity, Toeplitz

● Hessenberg, Triangular

● Scalar

■ Indexlist

NOTE: To reproduce the examples, cut and paste the bold courier text.
189

MATRIXX 7.0
Xmath User’s Guide
5.2 Matrix

A matrix is an object organizing m rows and n columns (m × n) of real or complex
numbers (elements). A complex number contains both a real and an imaginary
term. A matrix is complex if at least one element is complex; to qualify as a real
matrix, all elements must be real.

Matrices are specified with the following syntax elements:

■ A matrix specification is enclosed in square brackets.

■ Matrix column elements must be separated by commas.

■ A semicolon separates rows.

For example, x=[jay, 4; 3,–1]. In a formatted matrix, a line feed replaces the
semicolon:

x=[jay, 4 # Line Feed
3, –1] # Return

(If your machine does not have a Line Feed key, see Table 1-7, p.20.) The matrix
specification ends with a right bracket.

Specific types of matrices are also created with functions such as zeros(),
random(), diagonal(), etc. These functions require row and column dimensions as
inputs:

set seed = 0
x=random(3,4)

x (a rectangular matrix) =

 0.211325 0.756044 0.000221135 0.330327
 0.665381 0.628392 0.849745 0.685731
 0.878216 0.068374 0.560849 0.662357

The functions check() and is() can be used to determine if a variable is a matrix.
For brief explanations of check() and is(), see 6.3.2 Object Query Functions, p.238.
Sample syntaxes are: check(x,{matrix}) or is(x,{matrix}).

Use size to find the row and column dimensions of a matrix:

size(x)

ans (a row vector) = 3 4

To find the total number of elements, use length():

length(x)
190

5

5
Data Objects and Operators
ans (a scalar) = 12

Many classes stem from the matrix class, and it is the primary component of
several more specialized objects.

5.2.1 Matrix Concatenation

Concatenation (combining several matrices into a new matrix) is performed using
square bracket operators []. Right concatenation is indicated with commas [,];
bottom concatenation is indicated by semicolons [;].

For example,

■ [A,B] concatenates B to the right of A (where B must have the same number of
rows as A).

■ [A;B] concatenates B to the bottom of A (where B must have the same number
of columns as A).

x=random(3,2)*12

x (a rectangular matrix) =

 8.71621 2.38217
 6.53109 2.7849
 2.77468 2.59756

x=[x,ones(3,4);ones(2,2),zeros(2,4)]

x (a rectangular matrix) =

 8.71621 2.38217 1 1 1 1
 6.53109 2.7849 1 1 1 1
 2.77468 2.59756 1 1 1 1
 1 1 0 0 0 0
 1 1 0 0 0 0

5.2.2 Matrix Operators

The operators in Table 5-1 have special meanings for matrices:

scalar operator matrix

usually means applying the operator elementwise.

mat1=[1,1,1,1; 2,2,2,2; 3,3,3,3];
mat2=mat1 * mat1'
191

MATRIXX 7.0
Xmath User’s Guide
mat2 (a square matrix) =
4 8 12

 8 16 24
 12 24 36

3 * mat1

ans (a rectangular matrix) =

 3 3 3 3
 6 6 6 6
 9 9 9 9

Table 5-1 Matrix Operations

Operator Effect

+ Addition (or unary plus). Matrices must have the same dimensions.

– Subtraction (or unary minus). Matrices must have the same dimensions.

* Matrix multiplication. The number of columns in the first matrix must
equal the number of rows in the second matrix.

/ Matrix right division. A/B solves the equation X ¥ B=A. The number of
columns in A must equal the number of rows in B.

\ Matrix left division. B\A solves the equation B ¥ X=A. The number of
columns in B must equal the number of rows in A.

' Transpose (unary suffix).

*' Complex conjugate transpose (unary suffix).

.* Elementwise matrix multiplication. Matrices must have the same
dimensions.

./ Elementwise division (left divided by right). Matrices must have the
same dimensions.

.\ Elementwise division (right divided by left). Matrices must have the
same dimensions.

^ or ** Raise a square matrix to a scalar power.

.^ or .** Raise elements to a power. Another matrix of the same size can contain
the powers.

.*. Kronecker product.

./. Kronecker right division.
192

5

5
Data Objects and Operators
5.2.3 Matrix Indexing

Indexing (extracting a specific subset of matrix elements) is performed using the
parentheses operators (). Indices can consist of any one of the following:

■ Two integers specifying the desired row and column.

A(i,j) extracts from A the element located in row i, at column j. This can be
demonstrated using the matrix mat2 created earlier.

mat2

mat2 (a square matrix) =

 4 8 12
 8 16 24
 12 24 36

mat2(2,3)

ans (a scalar) = 24

.\. Kronecker left division.

& Elementwise logical and.

| Elementwise logical or.

! Elementwise logical not.

< Elementwise less than.

> Elementwise greater than.

<= Elementwise less than or equal.

>= Elementwise greater than or equal.

== Elementwise equal.

<> Elementwise not equal.

= Assignment.

Table 5-1 Matrix Operations (Continued)

Operator Effect
193

MATRIXX 7.0
Xmath User’s Guide
■ Two vectors of integers specifying a range of rows and columns.
A(vector1,vector2) extracts a portion of A with rows corresponding to vector 1
and columns corresponding to vector 2.

mat2(1:2,2:3)

ans (a square matrix) =

 8 12
 16 24

■ An index list that specifies all desired element locations in terms of row and
column indices. An index list can be created with the find() or indexlist()
functions. For more on the index list object, see 5.8 Index Lists, p.239.

ijList=find(mat2>15)

ijList (an index list) =

 2 2
 2 3
 3 2
 3 3

■ Note that find() returns the row and column coordinates for elements in mat2
that are greater than 15: (2,2), (2,3), (3,2), and (3,3). You can use indexing to
display the values in these index list locations:

mat2(ijList)

ans (a column vector) =

 16
 24
 24
 36

Indexing with the Colon Operator (:)

The colon operator (:) is a wildcard for all elements, thus A(i,:) is the ith row of A
and A(:,j) is the jth column of A.

You can use a wildcard and a decreasing vector to reverse the columns of a
matrix.

mat2(:,[3:-1:1])

ans (a square matrix) =
194

5

5
Data Objects and Operators
 12 8 4
 24 16 8
 36 24 12

Here wildcards are used to extract rows, which are reassembled into a new
matrix:

mat3=[mat2(1,:);sqrt(mat2(2,:));mat2(3,:)^2]

mat3 (a square matrix) =

 4 8 12
 2.82843 4 4.89898
 144 576 1296

5.2.4 Vector

The vector class is a subclass (or specialization) of the matrix class. A vector object
is a matrix that has a row or column dimension equal to 1. Vectors can be oriented
as either rows or columns.

Many of the functions defined for matrices apply to vectors as well. Vectors also
have many special behaviors. The most important of these are listed below:

■ Use ^ to raise elements to a power (for matrices, use .^).

[1:4]^[1:4]

ans (a row vector) = 1 4 27 256

■ Vectors can be indexed with a single index variable. Thus v(i) is the ith

element of the vector v. A single vector of integers can also be used as an
index.

a=[2,4,6,8,10]

a (a row vector) = 2 4 6 8 10

a([1,3,5])

ans (a row vector) = 2 6 10

■ The colon (:) wildcard expands vectors in column form. aVector(:) is
always defined as a column, regardless of whether the vector is a row or
column.

■ The length() function is the most natural method of determining the length of
vector. length(aVector) is defined as max(size(aVector)).
195

MATRIXX 7.0
Xmath User’s Guide
■ To see if a variable is a vector, invoke is(var,{vector}) or
check(var,{vector}).

To determine whether the vector is a row or column, use is(var,{row}) or
is(var,{column}) (or use check). The {row} and {column} keywords imply
{vector}. For brief explanations of check and is, see 6.3.2 Object Query
Functions, p.238.

Regular Vector

A regular vector is evenly spaced, with each element a fixed increment from the
previous value. If a regular vector is created with the colon operator, Xmath stores
it as just three values (start:increment:stop). You can treat it as a vector, but it is
displayed in a special manner.

■ A regular vector can only be a row vector. Transposing it expands it to full
size (turns it into a simple vector).

x=0:0.33:1

x (a regularly spaced vector) = 0 : 0.33 : 1

x'

ans (a column vector) =

 0
 0.33
 0.66
 0.99

■ Putting a regular vector between square braces [] will expand it.

[x]

ans (a row vector) = 0 0.33 0.66 0.99

A regular vector is internally expanded for most operations, except indexing.

Although a regular vector is stored in compact form (as start, stop, and
increment values), it has the same dimensions as if it were created in
expanded form. You can view the sizes of all the variables in your current
partition with the who command. Use the size function to view the size of a
single variable:

size(x)

ans (a row vector) = 1 4
196

5

5
Data Objects and Operators
Logspaced Vector

A logspaced vector is just like a regular vector except that its points are evenly
spaced on a log scale. It can only be created with the logspace() function.
logspace() inputs are the initial value, the final value, and the number of points
desired in the vector. All the display considerations for a regular vector apply to
logspaced vectors.

x1=logspace(0.1,10,4)

x1 (a log–spaced vector) = 0.1 : 10 (4 points)

[x1]

ans (a row vector) = 0.1 0.464159 2.15443 10

5.2.5 Square Matrix

The square matrix class is a subclass of the matrix class. A square matrix object
has equal row and column dimensions.

All of the functions that are defined for matrices are also defined for square
matrices. However, there are several square matrix functions that are not valid for
rectangular matrices. The most important of these are shown in Table 5-2.

Table 5-2 Functions That Are Only Valid for Square Matrices

Function Result

^ or ** raise matrix to a power (A^3=A × A × A)

.^ or .** raise each element to a power

cholesky() Cholesky decomposition

cosm() matrix cosine (use cos elementwise)

det() determinant

eig() eigenvalues

expm() matrix exponential (use exp elementwise)

hessenberg() Hessenberg decomposition

inv() inverse

logm() matrix logarithm (use log elementwise)
197

MATRIXX 7.0
Xmath User’s Guide
Symmetric

The symmetric matrix class is a subclass of the square matrix class. A symmetric
matrix object is equal to its transpose.

For most applications, symmetric matrices act just like square matrices. Certain
algorithms take advantage of their special structure to achieve improved results.
For example, the eigenvalues of a symmetric matrix can be found more quickly
than the eigenvalues of a general matrix; also, the answers are constrained to be
purely real.

a=[1:4];b=[a;a;a;a]

b (a square matrix) =

 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4

is(b,{symmetric})

ans (a scalar) = 0

c=tril(b,1) + tril(b,1)'

lu() L-U decomposition

orth() orthogonal decomposition

polynomial() characteristic polynomial

polyvalm() evaluates polynomial function of a matrix

qz() generalized eigenvalues

rref() reduced–row echelon form

schur() Schur form

sinm() square matrix sine (use sin elementwise)

sqrtm() matrix square root (use sqrt elementwise)

trace() find the sum of the diagonal elements of a matrix

Table 5-2 Functions That Are Only Valid for Square Matrices (Continued)

Function Result
198

5

5
Data Objects and Operators
c (a square matrix) =

 2 3 1 1
 3 4 5 2
 1 5 6 7
 1 2 7 8

is(c,{symmetric})

ans (a scalar) = 1

Diagonal()

The diagonal matrix class is a subclass of the symmetric matrix class and the
triangular matrix class (see p.201). A diagonal matrix object has zero in all
positions except along the main diagonal.

The diagonal() function can be used to extract a diagonal from a matrix. Extract
the diagonal from the matrix c defined above:

d=diagonal(c)

d (a column vector) =

 2
 4
 6
 8

If a vector is used as an input, a matrix is created that has the vector on the main
diagonal.

e=diagonal(d) # use the vector d as the
diagonal of a new matrix

e (a square matrix) =

 2 0 0 0
 0 4 0 0
 0 0 6 0
 0 0 0 8

Identity

The identity matrix class is a subclass of the diagonal matrix class. An identity
matrix object has ones on the main diagonal and zero for all other elements. The
function eye() creates an identity matrix from row and column dimensions:
199

MATRIXX 7.0
Xmath User’s Guide
eye(3,3)

ans (a square matrix) =

 1 0 0
 0 1 0
 0 0 1

For most applications, identity matrices act like square matrices. Certain
algorithms (such as multiplication and inversion) take advantage of their special
structure.

Toeplitz

The Toeplitz matrix class is a specialization of the square matrix class with
constant entries along the diagonals. A Toeplitz matrix can be described by its
first row and first column (if it is symmetric, it can be described by a single
vector). The matrix left and right division operations have been overloaded for
solving matrix equations of the form and (where T is a
Toeplitz matrix):

t=toeplitz([3,2,1],[1,2,3])

t (a toeplitz matrix) =

 3 2 1
 2 3 2
 3 2 3

Hessenberg()

The Hessenberg matrix class is a subclass of the square matrix class. A
Hessenberg matrix has zeros in all elements below the first subdiagonal or above
the first superdiagonal. The hessenberg() function puts a matrix A in Hessenberg
form H, defined such that ∗ ' where T is a unitary
transformation matrix of the same size and type as A.

hessenberg([1,2,3;1,2,3;1,2,3])

ans (a square matrix) =

 1 -3.53553 0.707107
 -1.41421 5 -1
 0 -3.14018e-16 3.14018e-16

T X A=× X T A=×

A T H× T×=
200

5

5
Data Objects and Operators
Triangular

The triangular matrix class is a specialization of the Hessenberg matrix class. A
triangular matrix object has zeros in all elements above the main diagonal (upper
triangular) or below the main diagonal (lower triangular).

set seed 0
a=round(rand(4,4)*4)

a (a square matrix) =

 1 3 0 1
 3 3 3 3
 4 0 2 3
 3 1 2 1

12345678 112345678 212345678

aTriu=triu(a) # an upper triangular

aTriu (a square matrix) =

 1 3 0 1
 0 3 3 3
 0 0 2 3
 0 0 0 1

aTril=tril(a) # a lower triangular

aTril (a square matrix) =

 1 0 0 0
 3 3 0 0
 4 0 2 0
 3 1 2 1

Scalar

The scalar class is a subclass of the square matrix class. A scalar object is a matrix
with a single row and a single column.

Any function or operator defined for a matrix is also defined for a scalar.
However, scalars have many special properties when used in combination with
other classes of objects, as shown in the samples that follow.

scalar x matrix — Each element of the matrix is multiplied by the scalar. The same
holds true for vectors and PDMs. Division works the same way.

5∗ [1:5]
201

MATRIXX 7.0
Xmath User’s Guide
ans (a row vector) = 5 10 15 20 25

ans/5

ans (a row vector) = 1 2 3 4 5

scalar x polynomial — If the polynomial is in factored form, the gain of the
polynomial is multiplied by the scalar. (Polynomials are discussed in detail
starting on p.205.) If the polynomial is in coefficient form, each coefficient is
multiplied by the scalar. Division works the same way.

Using a scalar with a polynomial in roots form:

4*polynomial(1:4)

ans (a polynomial) =

 4(x - 1)(x - 2)(x - 3)(x - 4)

Using a scalar with a polynomial in coefficients form:

makepoly(1:4)

ans (a polynomial) =

 3 2
 x + 2x + 3x + 4

ans/0.5

ans (a polynomial) =

 3 2
 2x + 4x + 6x + 8

scalar x system — Multiplies the gain of the system by the scalar. (Dynamic-system
objects are discussed in detail starting on p.227.) For transfer functions, the
numerator polynomial is multiplied by the scalar. For state-space systems, the
C and D matrices are multiplied by the scalar. Division works the same way.

system([2,2;2,2],[3;3],[4,4],1);

2*ans

ans (a state space system) =

 A
 2 2
 2 2

 B
 3
202

5

5
Data Objects and Operators
 3

 C

 8 8

 D
 2

 X0
 0
 0

 System is continuous

system(makepoly(2:5),makepoly(0:3))

ans (a transfer function) =

 3 2
 2x + 3x + 4x + 5

 2
 x + 2x + 3

 initial integrator outputs
 0
 0
 0
 Input Names

 Input 1

 Output Names

 Output 1

 System is continuous

ans/2

ans (a transfer function) =

 3 2
 x + 1.5x + 2x + 2.5

 2
 x + 2x + 3

 initial integrator outputs
 0
 0
 0
 Input Names

203

MATRIXX 7.0
Xmath User’s Guide
 Input 1

 Output Names

 Output 1

System is continuous

matrix+scalar — The scalar is added to each element of the matrix. This operation is
commutative. The same holds true for vectors and PDMs. Subtraction works
the same way.

-2+(3+(ones(3,3)))

ans (a square matrix) =

 2 2 2
 2 2 2
 2 2 2

polynomial+scalar — Converts the polynomial to coefficient form and adds the
scalar to the scalar (order 0) term of the polynomial. This operation is
commutative. Subtraction works the same way.

p=polynomial(3:5)

p (a polynomial) =

 (x - 3)(x - 4)(x - 5)

2+p

ans (a polynomial) =

 3 2
 x - 12x + 47x - 58

matrix(vector,vector)=scalar — Copies the scalar to each element of the specified
partition of the matrix. The same holds true for vectors and PDMs.

o=ones(4,5);
o([2:3],[2:4])=32

o (a rectangular matrix) =

 1 1 1 1 1
 1 32 32 32 1
 1 32 32 32 1
 1 1 1 1 1
204

5

5
Data Objects and Operators
5.3 Polynomial()

Polynomials take the form or . The first
notation is in coefficients form; its coefficients (1, 9, -4 and 7) are plainly shown.
The second polynomial is in roots form (its roots being 0, 2, and -6). Polynomial
objects consist of a vector of coefficients or roots and a single independent
variable (a text string, usually a single character).

Polynomials can be defined in terms of their roots or coefficients. The
polynomial() function creates a polynomial object where roots are the elements of
a vector or eigenvalues of a square matrix you supply. You can specify a text
string for the polynomial variable. makepoly() converts a simple vector into a
polynomial.

Create a polynomial from its roots with polynomial(). The polynomial is
displayed in roots form:

p1=polynomial([1*jay, -1*jay, 1,
 2*jay, -2*jay, 2,
 3*jay, -3*jay, 3], "j")

p1 (a polynomial) =
 2 2 2
(j - 1)(j - 2)(j - 3)(j + 1)(j + 4)(j + 9)

p2=polynomial([9,8,7])

p2 (a polynomial) =

(x - 7)(x - 8)(x - 9)

Create a polynomial from a vector with makepoly(); the polynomial will be
displayed in coefficients form:

p3=makepoly(logspace(1,3,5),"L")

p3 (a polynomial) =

 4 3 2
 L + 1.31607L + 1.73205L + 2.27951L + 3

p4=makepoly(1:.5:3)

p4 (a polynomial) =

 4 3 2
x + 1.5x + 2x + 2.5x + 3

x
3

9 x
2

4x 7+–+ x x 2–() x 6+()
205

MATRIXX 7.0
Xmath User’s Guide
5.3.1 Polynomial Operators

The following operators are valid for polynomials:

Operations can only be performed between polynomials that have the same
independent variable or between polynomials and scalars.

p5=p2+p4

p5 (a polynomial) =

 4 3 2
 x + 2.5x - 22x + 193.5x - 501

p6=p2*p2

p6 (a polynomial) =

 2 2 2
 (x - 7) (x - 8) (x - 9)

sysp=3/p6

sysp (a transfer function) =

 3

 2 2 2
 (x - 7) (x - 8) (x - 9)

initial integrator outputs
 0
 0
 0
 0
 0
 0
 Input Names

 Input 1

 Output Names

 Output 1

+ polynomial addition

– polynomial subtraction

* polynomial multiplication

/ creates a transfer function
206

5

5
Data Objects and Operators
 System is continuous

The functions in Table 5-3 can handle parts of polynomials; for more information
on inputs and outputs, see the MATRIXX online Help.

5.4 Parameter-Dependent Matrix (PDM)

A parameter-dependent matrix (PDM) is a flexible extension of the matrix data
type. It consists of a vector of same-size matrices with a vector attached to it. The
attached vector (or parameter) is referred to as the domain (Figure 5-2). A PDM
also has optional string names for its rows and columns (see Figure 5-3).

Table 5-3 Polynomial Handling Functions

roots() extracts the roots of a polynomial

makematrix() extracts the coefficients of a polynomial

domain() extracts the independent variable from a polynomial or PDM

polyval() evaluates a polynomial at each element of a given matrix

polyvalm() evaluates a polynomial over an entire square matrix
207

MATRIXX 7.0
Xmath User’s Guide
PDM data is stored as a series of matrices indexed by a single domain vector.
Computations involving the PDM are performed on each matrix separately. Data
can also be handled as a series of vectors, called channels, having a common
domain vector (time or frequency, for example). In this format, the computations
are performed on each vector of the data separately.

Used either way, PDMs provide a convenient method for storing data as a
function of a parameter and are particularly useful in the analysis of multiple
input and/or output dynamic systems, where they can be used to store time or
frequency responses.

So, for example, when the frequency response of a system with n inputs and m
outputs is calculated, a PDM is created. Each of the n columns represents an
input, each of m rows represents an output, and the dependent matrix at element i
of the domain corresponds to the frequency response from each output to each
input. Plotting time and frequency responses stored as PDMs are particularly
convenient when the {strip} keyword is used, in which case a matrix plot is
produced where the rows and columns correspond with inputs and outputs,
respectively (for information on strip plots, see 4.3.15 Strip Plots, p.145). For an
explanation of time response, see 5.5.5 Time Response, p.234.

Figure 5-2 Structure of a PDM

Domain

vectors is called a channel
One vector in a matrix of

m rows

n columns

i

208

5

5
Data Objects and Operators
5.4.1 PDM Organization

Consider the object radar as an example of PDM organization (Figure 5-3). Exactly
how radar is created is outlined in 5.4.2 Creating PDMs, p.210.

Every PDM consists of five main parts:

Dependent Data Matrix — Every PDM contains one or more matrices; radar has five 2
× 2 matrices in the dependent data area. The matrices must be the same size.
There is no limit to the size or number of matrices in this area.

Domain Vector — The PDM allows you to group an independent vector of
parameter values and a stack of associated matrices. The vector of
independent parameter values is called the domain of the PDM. The domain
usually represents a physical parameter, for example, time, frequency,
temperature, pressure, or altitude. If no domain vector is specified, the PDM
domain defaults to increasing positive integers starting from one.

Domain Name — A label for the domain vector. In radar, the domain string is "RCS".
If no name is specified, the default string is "domain".

Row Names — Each dependent matrix row may have an optional string name. In
radar, the names are "Radar 1" and "Radar 2". Each matrix has the same row

Figure 5-3 Parts of the PDM radar

Domain

Domain

Dependent Data Matrices

Vector

Name

Row Names Column Names

RCS | Range % Error
---------+----------------------------

0.01 | Radar 1 5.311 0.01
| Radar 2 6.316 0.07

---------+----------------------------
0.02 | Radar 1 16.79 0.0

| Radar 2 19.97 0.07
---------+----------------------------

1 | Radar 1 26.28 0.08
| Radar 2 29.86 0.04

---------+----------------------------
2 | Radar 1 35.51 0.04

| Radar 2 42.23 0.09
---------+----------------------------

6 | Radar 1 53.11 0.01
| Radar 2 63.16 0.02

---------+----------------------------
209

MATRIXX 7.0
Xmath User’s Guide
names associated with it. If no names are specified, the row names are labeled
"Row 1", "Row 2", ..."Row N".

Column Names — Each dependent matrix column may have an optional string
name. In radar, the names are "Range" and "% Error". If no column names are
specified, the columns are labeled "Col 1", "Col 2", ..."Col N".

5.4.2 Creating PDMs

PDMs are created from a single matrix object using the function pdm().
Additional optional arguments to pdm() specify the domain, domain label, and
row and column labels to be associated with the matrices in the final PDM.

For the PDM radar, the dependent data is formed from a columnwise
concatenation of the vectors maxrange and perr:

maxrange=[5.311, 6.313, 16.79, 19.97, 26.28, 29.86, 35.51, 42.23,
53.11, 63.16]';

perr = [0.01, 0.07, 0.0, 0.07, 0.08, 0.04, 0.04, 0.09, 0.01, 0.02]';

The final dependent data matrix [maxrange,perr] used as an argument to pdm()
has 2 columns and 10 rows.

The domain vector used in radar, rcs, has 5 elements.

rcs = [0.01,0.02,1,2,6];

Use the pdm() function to construct the PDM radar from the matrix
[maxrange,perr] and the domain vector RCS:

radar = pdm([maxrange,perr],rcs,{domainName="RCS",
rowNames = ["Radar 1","Radar 2"],
columnNames = ["Range","% Error"]})

radar (a pdm) =

 RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 5.311 0.01
 | Radar 2 6.313 0.07
-----+-------------------------
0.02 | Radar 1 16.79 0
 | Radar 2 19.97 0.07
-----+-------------------------
1 | Radar 1 26.28 0.08
 | Radar 2 29.86 0.04
-----+-------------------------
2 | Radar 1 35.51 0.04
 | Radar 2 42.23 0.09
210

5

5
Data Objects and Operators
-----+-------------------------
6 | Radar 1 53.11 0.01
 | Radar 2 63.16 0.02
-----+-------------------------

You have just recreated the PDM shown on page 209.

The dependent matrix is the only required argument to a PDM. Any additional
arguments can modify the structure of the PDM. For example, using pdm() with
no optional arguments results in a PDM with each dependent matrix having one
row.

5.4.3 Default PDM Behavior

If you do not use the rows or columns keywords and do not specify a domain
vector, each row of the input matrix becomes one of the output dependent data
matrices. For example:

r43=rand(4,3)

r43 (a rectangular matrix) =

0.849745 0.685731 0.878216
0.068374 0.560849 0.662357
0.726351 0.198514 0.544257
0.232075 0.231224 0.216463

pdm(r43)

ans (a pdm) =

domain | Col 1 Col 2 Col 3
-------+-------------------------------
 1 | 0.849745 0.685731 0.878216
 2 | 0.068374 0.560849 0.662357
 3 | 0.726351 0.198514 0.544257
 4 | 0.232075 0.231224 0.216463

This default behavior also applies if any or all of the rows or columns keywords,
or domain vector, are specified in a way that matches the default case. For
example, Xmath generates the same PDM output (the rows and columns
keywords are ignored in this case):

pdm(r43,{rows=1,columns=3})

ans (a pdm) =

domain | Col 1 Col 2 Col 3
-------+-------------------------------

1 | 0.849745 0.685731 0.878216
211

MATRIXX 7.0
Xmath User’s Guide
2 | 0.068374 0.560849 0.662357
3 | 0.726351 0.198514 0.544257
4 | 0.232075 0.231224 0.216463

pdm(r43,1:4)

ans (a pdm) =

domain | Col 1 Col 2 Col 3
-------+-------------------------------

1 | 0.849745 0.685731 0.878216
2 | 0.068374 0.560849 0.662357
3 | 0.726351 0.198514 0.544257
4 | 0.232075 0.231224 0.216463

If you specify arguments that deviate from the default, other PDMs are obtained:

pdm(r43,1:3)

ans (a pdm) =

domain |
-------+----------------

1 | Row 1 0.849745
 | Row 2 0.068374
 | Row 3 0.726351
 | Row 4 0.232075

-------+----------------
 2 | Row 1 0.685731
 | Row 2 0.560849
 | Row 3 0.198514
 | Row 4 0.231224

-------+----------------
 3 | Row 1 0.878216
 | Row 2 0.662357
 | Row 3 0.544257
 | Row 4 0.216463

-------+----------------

In the above example, the number of rows of the input matrix (4) is not a multiple
of the length of the domain vector (3). However, the number of columns of the
input matrix (3) is a multiple. In this case, each column (instead of each row) of
the input matrix becomes one of the output Dependent Data Matrices.

When no domain vector is specified, the default vector is [1:1:#rows].

pdm([maxrange,perr])

ans (a pdm) =

domain | Col 1 Col 2
-------+----------------
 1 | 5.311 0.01
 2 | 6.313 0.07
212

5

5
Data Objects and Operators
 3 | 16.79 0
 4 | 19.97 0.07
 5 | 26.28 0.08
 6 | 29.86 0.04
 7 | 35.51 0.04
 8 | 42.23 0.09
 9 | 53.11 0.01
 10 | 63.16 0.02

To change the dimensions of the dependent matrices, use the rows and columns
keywords. For example:

pdm([maxrange,perr], {rows = 2, columns = 2})

ans (a pdm) =

domain | Col 1 Col 2
-------+---------------------
 1 | Row 1 5.311 0.01
 | Row 2 6.313 0.07
-------+---------------------
 2 | Row 1 16.79 0
 | Row 2 19.97 0.07
-------+---------------------
 3 | Row 1 26.28 0.08
 | Row 2 29.86 0.04
-------+---------------------
 4 | Row 1 35.51 0.04
 | Row 2 42.23 0.09
-------+---------------------
 5 | Row 1 53.11 0.01
 | Row 2 63.16 0.02
-------+---------------------

Alternatively, the row and column size is implied in the number of strings entered
in keywords columnnames and rownames:

pdm([maxrange,perr],{rowNames = ["Radar 1","Radar 2"],
columnNames = ["Range","% Error"]})

ans (a pdm) =

domain | Range % Error
-------+-------------------------
 1 | Radar 1 5.311 0.01
 | Radar 2 6.313 0.07
-------+-------------------------
 2 | Radar 1 16.79 0
 | Radar 2 19.97 0.07
-------+-------------------------
 3 | Radar 1 26.28 0.08
 | Radar 2 29.86 0.04
-------+-------------------------
 4 | Radar 1 35.51 0.04
213

MATRIXX 7.0
Xmath User’s Guide
 | Radar 2 42.23 0.09
-------+-------------------------
 5 | Radar 1 53.11 0.01
 | Radar 2 63.16 0.02
-------+-------------------------

The dependent matrix size can also be influenced by the domain vector. In the
following example, the columns of the PDM matrices are the same as the input
matrix. The number of rows of each PDM matrix is equal to the total number of
rows in the input matrix divided by the number of elements in the domain vector.
The domain rcs has 5 elements, and the input matrix has 10 rows. Therefore, each
PDM matrix has 10/5 (=2) rows.

pdm([maxrange,perr],rcs)

ans (a pdm) =

domain | Col 1 Col 2
-------+---------------------
 0.01 | Row 1 5.311 0.01
 | Row 2 6.313 0.07
-------+---------------------
 0.02 | Row 1 16.79 0
 | Row 2 19.97 0.07
-------+---------------------
 1 | Row 1 26.28 0.08
 | Row 2 29.86 0.04
-------+---------------------
 2 | Row 1 35.51 0.04
 | Row 2 42.23 0.09
-------+---------------------
 6 | Row 1 53.11 0.01
 | Row 2 63.16 0.02
-------+---------------------

The PDM row and column dimensions specified by rows, rowNames, columns,
and columnNames must agree with the PDM dimensions specified by the domain
vector, or an error message is returned:

pdm(r43,{rows=1,columns=3})

Dimensions of PDM do not match specified rows and columns and length of domain
vector

5.4.4 PDM Channels

In some circumstances, a PDM is a collection of vectors instead of a collection of
matrices. For PDMs, these vectors are called channels of the PDM. A channel is a
214

5

5
Data Objects and Operators
vector consisting of the same element from each dependent matrix. For example,
radar has four channels,

(1,1) : 5.311, 16.79, 26.28, 35.51, 53.11
(2,1) : 6.313, 19.97, 29.86, 42.23, 63.16
(1,2) : 0.01, 0, 0.08, 0.04, 0.01
(2,2) : 0.07, 0.07, 0.04, 0.09, 0.02

and all channels have the common independent variable defined by rcs.
Figure 5-2 illustrates this idea.

Certain MathScript functions, such as fft(), have the option of operating on the
dependent matrices or the channels of a PDM. By default, all functions operate on
the dependent matrices.

Y = fft(radar)

If the FFT of each channel is needed, the channels keyword must be included.

Y = fft(radar, {channels})

See 5.4.8 Using Functions with PDMs, p.225 for more details on using functions
with PDMs.

5.4.5 Indexing to Extract Portions of a PDM

PDM Dimensions

Use the size() function to see the dimensions of the new PDM:

size(radar)

ans (a row vector) = 2 2 5

The above result indicates that each dependent matrix has two rows and two
columns, and that the length of the PDM (the length of the domain or the number
of dependent matrices) is five.

Dependent Matrices

PDM indexing allows you to extract parts of a PDM. The output of any PDM
indexing operation is always another PDM. If you want to index to extract a
single piece of data (as opposed to a dependent matrix or a channel of a PDM) it
may be simpler to use makematrix() before indexing (see p.222).
215

MATRIXX 7.0
Xmath User’s Guide
To extract a single dependent matrix, use a single index corresponding to the
domain value of interest. For example, you might want to extract only the data
pertaining to objects with RCS value of 1:

radar(3)

ans (a pdm) =

RCS | Range % Error
----+------------------------
 1 | Radar 1 26.28 0.08
 | Radar 2 29.86 0.04
----+------------------------

To see the third through fifth elements of the PDM, you could index into radar
using the standard colon notation (see p.194):

radar(3:5)

ans (a pdm) =

RCS | Range % Error
----+------------------------
 1 | Radar 1 26.28 0.08
 | Radar 2 29.86 0.04
----+------------------------
 2 | Radar 1 35.51 0.04
 | Radar 2 42.23 0.09
----+------------------------
 6 | Radar 1 53.11 0.01
 | Radar 2 63.16 0.02
----+------------------------

You can also examine one or more channels of the data in a PDM and see changes
over the length of the PDM (as the RCS parameter changes). When indexing with
both row and column specifications, you extract the (i,j) channel over the entire
domain. The following example extracts the element that resides in the second
row and first column of each dependent matrix.

radar(2,1)

ans (a pdm) =

 RCS | Range
-----+----------------
0.01 | Radar 2 6.313
0.02 | Radar 2 19.97
1 | Radar 2 29.86
2 | Radar 2 42.23
6 | Radar 2 63.16

The standard colon notation can be used to access more than one channel:
216

5

5
Data Objects and Operators
radar(1:2,1)

ans (a pdm) =

 RCS | Range
-----+----------------
0.01 | Radar 1 5.311
 | Radar 2 6.313
-----+----------------
0.02 | Radar 1 16.79
 | Radar 2 19.97
-----+----------------
1 | Radar 1 26.28
 | Radar 2 29.86
-----+----------------
2 | Radar 1 35.51
 | Radar 2 42.23
-----+----------------
6 | Radar 1 53.11
 | Radar 2 63.16
-----+----------------

To extract a single value in PDM form, you can use a temporary value:

temp=radar(5);
FinalPerr=temp(2,2)

FinalPerr (a pdm) =

RCS | % Error
----+-----------------
 6 | Radar 2 0.02

Individual PDM elements can be extracted and modified using three scalar
indices to specify the row, column, and domain positions, respectively. The
returned object is always a scalar. Thus, for the radar example:

radar(1,1,1)

ans (a scalar) = 5.311

radar(2,2,5)

ans (a scalar) = 0.02

radar(2,1,3)=radar(1,1,5)

radar (a pdm) =
RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 5.311 0.01
 | Radar 2 6.313 0.07
-----+-------------------------
0.02 | Radar 1 16.79 0
217

MATRIXX 7.0
Xmath User’s Guide
 | Radar 2 19.97 0.07
-----+-------------------------
1 | Radar 1 26.28 0.08
 | Radar 2 53.11 0.04
-----+-------------------------
2 | Radar 1 35.51 0.04
 | Radar 2 42.23 0.09
-----+-------------------------
6 | Radar 1 53.11 0.01
 | Radar 2 63.16 0.02
-----+-------------------------

Domain and Name Information

The domain can be extracted using domain().

rsvector = domain(radar)

rsvector (a row vector) = 0.01 0.02 1 2 6

The PDM names can be extracted with the names() function. In order to get all
three labels, specify three outputs:

[rowN,colN,domN]=names(radar)

rowN (a row vector of strings) = Radar 1 Radar 2

colN (a row vector of strings) = Range % Error

domN (a string) = RCS

Example 5-1 Indexing into a PDM

This example illustrates PDM indexing by plotting a PDM and different
combinations of data that can be extracted from it. Note that plot() will reuse the
row and column labels from your PDM, if possible.

x=logspace(1,100,3);F=([1.02:.02:2.5]);
s1c=system(makep([sin(x)]),makep(-x*2));
s2c=system(makep([cos(x)]),makep(x*2));
s3c=system(makep([cot(x)]),makep(x));

s1d=discr(s1c,1);
s2d=discr(s2c,2);
s3d=discr(s3c,3);

f1c=freq(s1c,F);f1d=freq(s1d,F);
f2c=freq(s2c,F);f2d=freq(s2d,F);
f3c=freq(s3c,F);f3d=freq(s3d,F);

p=pdm([[f1c;f1d],[f2c;f2d],[f3c;f3d]],
218

5

5
Data Objects and Operators
{columnnames=["sys","sys2","sys3"], rownames=["cont","disc"]});
plot(p,{strip})

If strip is specified alone, each submatrix is plotted in a separate subgraph, as
shown in Figure 5-4. Try plotting portions of the PDM with the different strip
settings shown below.

If the number of strips is specified, the inputs will be plotted accordingly.

plot(p,{strip=3})

Extract all discrete rows, then plot one plot per subgraph:

plot(p(2,:),{strip=1})

Plot all rows of the 2nd column with default strip settings.

plot(p(:,2),{strip})

Figure 5-4 PDM Plotted with strip
219

MATRIXX 7.0
Xmath User’s Guide
5.4.6 Modifying PDMs

Substitution

Using PDM indexing (outlined in 5.4.5 Indexing to Extract Portions of a PDM,
p.215), assignments can be made to replace parts of a PDM. For example, to
replace the third dependent matrix of radar with an identity matrix, type:

ind = eye(2,2); radar_copy = radar; radar_copy(3) = ind

To replace a channel of data, type:

ind = [10,20,30,40,50];
radar_copy(1,1) = ind

radar_copy (a pdm) =

 RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 5.311 0.01
 | Radar 2 6.313 0.07
-----+-------------------------
0.02 | Radar 1 16.79 0
 | Radar 2 19.97 0.07
-----+-------------------------
1 | Radar 1 1 0
 | Radar 2 0 1
-----+-------------------------
2 | Radar 1 35.51 0.04
 | Radar 2 42.23 0.09
-----+-------------------------
6 | Radar 1 53.11 0.01
 | Radar 2 63.16 0.02
-----+-------------------------
220

5

5
Data Objects and Operators
Concatenation

Compatible PDMs can be concatenated in the same manner as matrices. A comma
results in right concatenation, and a semicolon results in bottom concatenation.

new_radar =[radar,radar(1:2,1)^2]

new_radar (a pdm) =

 RCS | Range % Error Range
-----+------------------------------------
0.01 | Radar 1 5.311 0.01 28.2067
 | Radar 2 6.313 0.07 39.854
-----+------------------------------------
0.02 | Radar 1 16.79 0 281.904
 | Radar 2 19.97 0.07 398.801
-----+------------------------------------
1 | Radar 1 26.28 0.08 690.638
 | Radar 2 29.86 0.04 891.62
-----+------------------------------------
2 | Radar 1 35.51 0.04 1260.96
 | Radar 2 42.23 0.09 1783.37
-----+------------------------------------
6 | Radar 1 53.11 0.01 2820.67
 | Radar 2 63.16 0.02 3989.19
-----+--

radar_copy (a pdm) =

 RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 10 0.01
 | Radar 2 6.313 0.07
-----+-------------------------
0.02 | Radar 1 20 0
 | Radar 2 19.97 0.07
-----+-------------------------
1 | Radar 1 30 0
 | Radar 2 0 1
-----+-------------------------
2 | Radar 1 40 0.04
 | Radar 2 42.23 0.09
-----+-------------------------
6 | Radar 1 50 0.01
 | Radar 2 63.16 0.02
-----+----------------------------
221

MATRIXX 7.0
Xmath User’s Guide
Converting PDMs to Matrices

The makeMatrix() function converts a PDM into a matrix by discarding the
independent parameter (domain) and right concatenating the dependent matrices
columnwise. If a PDM is an argument to makematrix(), a matrix containing all
dependent matrix data is returned:

radar_mx = makematrix(radar)

radar_mx (a rectangular matrix) =

5.311 0.01 16.79 0 26.28 0.08 35.51 0.04 ...
6.313 0.07 19.97 0.07 29.86 0.04 42.23 0.09 ...

All Radar 1 values are right-concatenated to form the first row, and all Radar 2
values appear in the second row.

To create a matrix formatted in the same manner as the dependent matrix
elements in radar, transpose the PDM (this transposes each dependent matrix
separately for each domain element), then transpose the result as shown below.
Compare this result to radar and radar_mx.

radar_mxTrans = makematrix(radar')'

radar_mxTrans (a rectangular matrix) =

 5.311 0.01
 6.313 0.07
 16.79 0
 19.97 0.07
 26.28 0.08
 29.86 0.04
 35.51 0.04
 42.23 0.09
 53.11 0.01
 63.16 0.02

When the channels keyword is used, rows of each dependent matrix are right-
concatenated to form rows in the resulting matrix:1

radar_mxChan = makematrix(radar,{channels})

radar_mxChan (a rectangular matrix) =

5.311 0.01 6.313 0.07
16.79 0 19.97 0.07
26.28 0.08 29.86 0.04

1. This feature can be used to convert time and frequency responses to a format similar to that
used in MATRIXX.
222

5

5
Data Objects and Operators
35.51 0.04 42.23 0.09
53.11 0.01 63.16 0.02

Sections of a PDM can also be used as an input to makematrix(). This makes it
easy to extract a desired value. For example, to see the range for Radar 2 at 0.01:

temp=makematrix(radar(1))

temp (a square matrix) =

5.311 0.01
6.313 0.07

temp(2,1)

ans (a scalar) = 6.313

The SAVE command also has the ability to create matrices from PDMs. When
SAVE is called with the matrixx keyword, all saved PDMs are stored as two
matrices. The domain is given the name pdmName_t and the dependent matrix
data is given the name pdmName_u, where pdmName is the name of the original
PDM. This handling is designed to map to simulation data.

5.4.7 Using PDMs with Operators

Operators defined for matrices are also defined for PDMs. For example, the
square of each element in the first dependent matrix of radar can be calculated by:

radar(1)^2

ans (a pdm) =

 RCS | Range % Error
-----+--------------------------
0.01 | Radar 1 28.2699 0.05381
 | Radar 2 33.9703 0.06803
-----+--------------------------

Notice the output is also a PDM.

Operations between two PDMs are defined such that the operation is performed
elementwise on each pair of corresponding matrices. These operations are restricted
to PDMs with identical dimensions.

For example, the average value of Row 1 and Row 2 is calculated by:

(radar(1,1) + radar(2,1))/2

RCS |
-----+----------------
223

MATRIXX 7.0
Xmath User’s Guide
0.01 | Radar 1 5.812
0.02 | Radar 1 18.38
1 | Radar 1 28.07
2 | Radar 1 38.87
6 | Radar 1 58.135

Operators can also be used between matrix objects (including vectors and scalars
as well as matrices) and PDMs. In this case, the operation is performed between the
matrix object and each dependent matrix in the PDM. The result of the operation is a
PDM with the same domain as the PDM operand.

For example, the identity matrix is added to each dependent matrix using the
expression:

radar + eye(2,2)

ans (a pdm) =

 RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 6.311 0.01
 | Radar 2 6.313 1.07
-----+-------------------------
0.02 | Radar 1 17.79 0
 | Radar 2 19.97 1.07
-----+-------------------------
1 | Radar 1 27.28 0.08
 | Radar 2 29.86 1.04
-----+-------------------------
2 | Radar 1 36.51 0.04
 | Radar 2 42.23 1.09
-----+-------------------------
6 | Radar 1 54.11 0.01
 | Radar 2 63.16 1.02
-----+-------------------------

A scalar value can also be used in operators with a PDM. The operation will be
applied to each matrix element and the scalar.

5.0 * radar(1)

ans (a pdm) =

 RCS | Range % Error
-----+-------------------------
0.01 | Radar 1 26.555 0.05
 | Radar 2 31.565 0.35
-----+-------------------------
224

5

5
Data Objects and Operators
5.4.8 Using Functions with PDMs

When a PDM is used as an input to a function, the function is applied to each
dependent matrix (Figure 5-5). If the channels keyword is available and is used,
the function will be applied to each channel.

For example, if xpdm is a step response of a system with n inputs, m outputs over
p time points, then is a PDM whose kth element
contains the maximum element of the kth matrix in xpdm (the maximum output
for every time point).2 The result of any function that accepts the channels
keyword is always a matrix the size of the dependent matrices in the PDM (see
Figure 5-6).

PDMs use optimized internal looping to speed up the total computation time.
Therefore, using a single PDM as a function input is much more efficient than
looping through a set of separate matrices with MathScript commands.

Next you will use the intrinsic function max() to illustrate the flexibility of PDMs.
max() finds the maximum over a specified subset of the PDM data.

Figure 5-5 Functions of PDMs

y pdm1

y pdm2

↓

y pdmn

=

=

=

f xpdm1()[]

f xpdm2()[]

↓
f xpdmn()[]

ypdm=f(xpdm)

2. Where max(xpdm,{channels}) is an n x m matrix where (i,j) element is the maximum of the
vector of the (i,j) elements of all the dependent matrices.

y ma x xp dm()= 1 1×() p×
225

MATRIXX 7.0
Xmath User’s Guide
To find the maximum range for both Radar 1 and Radar 2 over all RCS values,
apply the function to all rows of the first column of dependent matrices. Type:

maxrad = max(radar(:,1))

maxrad (a pdm) =

 RCS |
-----+---------
0.01 | 6.313
0.02 | 19.97
1 | 29.86
2 | 42.23
6 | 63.16

max() treats the PDM as a series of matrices, returning a PDM with the same
domain as radar. It loops over all the domain points (values of RCS), finds the
largest value each dependent vector contains (in this case, the Range value), and
returns that scalar value as the dependent matrix corresponding to the same
domain point in the output PDM.

You might want to know the maximum ranges for Radar 1 and Radar 2 separately.
In this case, the PDM is treated as a matrix of vectors, each corresponding to a
channel of the PDM. To use max() in this manner, invoke the channels keyword:

maxvals = max(radar(1:2,1), {channels})

maxvals (a column vector) =
53.11
63.16

Figure 5-6 Functions of a PDM Over Channels

f v11 d1 :dp()() ... f vn 1 d1 :dp()()

↓
f v1 m d1 :dp()() ... f vn m d1 :dp()()

=

=

f

v11() ... vn 1()

: :

v1 m() ... vn n()
d1

↓

v11() ... vn 1()

: :

v1 m() ... vn n()
dp

y=f(xpdm,{channels})
226

5

5
Data Objects and Operators
The range for Radar 1 corresponds to the (1,1) channel, and the range for Radar 2
corresponds to the (2,1) channel. The (1,1) element of the output matrix, 53.11, is
the maximum value for the range of Radar 1 over all the RCS values. The second
element is the maximum value for Radar 2.

5.5 Dynamic System

The dynamic system class represents systems of time-dependent equations for
modeling input/output relationships. In general, there are many different kinds
of dynamic systems, with many different representations.

Xmath supports linear, time-invariant systems. These can be continuous (systems
of differential equations) or discrete (systems of difference equations). Two
specific representations are provided: state-space systems and transfer functions.
Both are created with the system() function and are discussed later. Sampling
times (0 for continuous systems and nonzero for discrete) are automatically stored
within a dynamic system object.

The dynamic system class is closely tied to the PDM class. Simulations or
dynamic systems are defined using a PDM to represent inputs, and return a PDM
representing the outputs. The * (product) operator has also been overloaded
(defined) such that system*input_pdm performs a simulation over the data in
input_pdm.

5.5.1 State-Space Systems

A state-space dynamic system stores the A, B, C, and D matrices associated with
the following equation:

xk 1+ A xk Buk+=

y C x D u+=

dx
d t
------ Ax B u+=

yk Cxk D uk+=

for continuous systems for discrete systems
227

MATRIXX 7.0
Xmath User’s Guide
x is the state vector (with initial conditions X0), u is the input vector, and y is the
output vector. All matrices are stored, even if they are null.

■ State-space systems can be single-input/single-output (SISO) or multiple-
input/multiple-output (MIMO).

■ Names can be attached to each of the inputs and outputs and states of a state-
space system. This capability is particularly useful with MIMO systems.

5.5.2 Transfer Functions

A transfer function is described as:

The notations H(s) and H(z) are common for transfer functions. s represents the
Laplace transform variable, and z represents the z-transform variable. A transfer
function represents a dynamic system in terms of numerator and denominator
polynomials.

■ A transfer function is proper if the order of the numerator is less than or equal
to the order of the denominator.

■ It may sometimes be convenient to use an improper or noncausal transfer
function (to represent an ideal differentiator, for example). Xmath allows you
to define an improper transfer function, but restricts the types of analyses you
can perform. You can find the frequency response of an improper transfer
function, but not the time response. An improper transfer function cannot be
connected with state-space systems or converted to state space form.

■ Currently, only SISO transfer functions are supported.

■ Names can be attached to the inputs and outputs of a system in transfer-
function form.

■ To perform a time-domain simulation (Sys × u), multiply a system by a PDM
whose columns contain the input vector(s) for the simulation(s). (See
5.5.5 Time Response, p.234).

y s()
u s()
----------- H s() num s()

den s()
--------------------= =

y z()
u z()
----------- H z() num z()

den z()
--------------------= =

for continuous systems for discrete systems
228

5

5
Data Objects and Operators
5.5.3 Creating Systems

Dynamic systems can be created with the system() function. If four compatibly-
sized matrices are given as inputs, a state-space system is formed.

a=[1,2;3,4]; b=[.1,-.1,1; 2,-.2,2]; c=[3,3]; d=[.4,-.4,4];
ssSys=system(a,b,c,d, {inputNames=["red","white","blue"],
 outputNames=["Flag"], stateNames=["Alaska","Nebraska"],dt=.01})

ssSys (a state space system) =

 A
 1 2
 3 4

 B
 0.1 -0.1 1
 2 -0.2 2

 C
 3 3

 D
 0.4 -0.4 4

 X0
 0
 0

State Names

Alaska Nebraska

Input Names

red
white
blue

Output Names

Flag

System is discrete, sampling at 0.01 seconds.

A handy shortcut for creating state-space systems with an all-zero D matrix is to
use a NULL-matrix specifier ([]) for the D matrix. This automatically sets the D
matrix to a zero matrix, with row size equal to the row size of C and column size
equal to the column size of B.

If dt was not given a value, ssSys would have been continuous (dt defaults to 0).
229

MATRIXX 7.0
Xmath User’s Guide
The size of a system object is defined by the number of outputs, inputs, and (in
the case of a state-space system) the number of states it has. You can use the size()
function to find these dimensions.

[out,in,states]=size(ssSys)?

out (a scalar) = 1

in (a scalar) = 3

states (a scalar) = 2

If a pair of polynomials is given, a transfer function results:

n=makepoly(polynomial([1,-1;2,-2],"s"));
d=polynomial([-2,1;1,-2],"s");
tfSys=system(n,d,{inputNames="In", outputnames="Out"})

tfSys (a transfer function) =

 s(s + 1)

 (s + 1)(s + 3)

 initial integrator outputs
 0
 0
 Input Names

 In

 Output Names

 Out

 System is continuous

The various parts of a transfer function or a state-space system can be extracted
with the abcd(), numden(), period(), and names() functions (see the MATRIXX
online Help).

Using Operators with Dynamic Systems

Operators have also been defined to perform connections between dynamic
systems. Suppose you have dynamic systems Sys1 and Sys2, where outputs are y1
and y2 and inputs are u1 and u2, respectively. The statements in Table 5-4 would
then be true.
230

5

5
Data Objects and Operators
Creating Subsystems by Indexing into Dynamic Systems

You can index into a dynamic system to create a subsystem comprising a subset of
the original inputs and outputs, as shown in Table 5-5.

Table 5-4 Operations on Dynamic Systems

Sys = Sys1 + Sys2 Defined such that y = y1 + y2.
The inputs are tied together such that u=u1=u2.

Sys = Sys1 – Sys2 Defined such that y = y1 – y2.

In the unary case, Sys = –Sys2 is defined such that y = –y2
(Sys1=system([],[],[],[])).

Sys = Sys2 * Sys1 The cascade connection of Sys1 followed by Sys2. The
output of Sys is y2 and the input is u1.

Sys = [Sys1;Sys2] Defined such that y = [y1;y2] and u=u1=u2 (inputs are tied
together).

Sys = [Sys1,Sys2] Defined such that y = y1 + y2 and u = [u1;u2].

Sys1

Sys2

u

u1 y1

y2u2

y
+

Sys1

Sys2

u

u1 y1

y2u2

y
-

Sys1 Sys2
u

u1 y1 u2 y2
y

Sys1

Sys2

u

u1 y1

y2u2

y

Sys1

Sys2

u1 y1

y2u2

y
+

231

MATRIXX 7.0
Xmath User’s Guide
If you are familiar with input/output notation, you may feel that the above
definition (outputs first, inputs second) of indexing seems reversed. It was
designed with the traditional definition of a transfer function in mind, where
outputs are specified first: y(s) = Sys(s) × u(s). (This definition also led to Xmath’s
definition of Sys × aPDM to perform simulation, since in that case y(t) = Sys × u(t)).
For a MIMO system with m outputs and n inputs, y is an m × 1 vector and u is n ×
1; thus, it makes sense for Sys to be m × n. We can see this if we index into ssSys
from p.229:

Sys2=ssSys(1,3)

Sys2 (a state space system) =

 A
 1 2
 3 4

 B
 1
 2

 C
 3 3

 D
 4

 X0
 0
 0

 State Names

 Alaska Nebraska

 Input Names

 blue

 Output Names

 Flag

 System is discrete, sampling at 0.01 seconds.

Table 5-5 Indexing Into a Dynamic System

Sys = Sys1(i,j) Defined to be a system such that y=y1(i) and u=u1(j). i and j
can both be vectors as well, in which case multiple inputs and
outputs will be extracted.
232

5

5
Data Objects and Operators
The output is a SISO dynamic system containing the third column of the B and D
matrices.

5.5.4 Functions for Manipulating Dynamic System Objects

Table 5-6 briefly describes functions commonly used to manipulate systems. To
see a full description of each function, see the MATRIXX online Help.

Table 5-6 Functions Commonly Used to Manipulate Systems

abcd() Extracts the component A, B, C, and D matrices from a state-
space system object. In addition, it returns the initial conditions
on the states if a fifth output argument is requested.

abcd() can be called on systems in either state-space or
transfer-function form. If the system is a transfer function, the
conversion to state-space is done internally to return A, B, C,
and D, although the format of the variable itself remains
unchanged. The transfer function must be proper.

discretize() Converts a continuous system to discrete form.

makecontinuous() Converts a discrete system to continuous form.

numden() Returns the numerator and denominator polynomials
comprising a SISO system in transfer function form. If the
system is in state-space form, an internal conversion is
performed to find the transfer function equivalent, but the
format of the system variable itself remains unchanged. State-
space systems used as inputs to numden() must be SISO. Note
that common roots in the numerator and denominator
polynomials are not canceled.

period() period() extracts the sample period (in seconds) of a system. If
the system is continuous, period() returns zero.

names() Extracts matrices of strings representing the input, output, and
(if the system is in state-space form) state names of a system. It
works much the same as described for PDMs on p.218.

check() Can be used to return a Boolean indication of whether a system
is in transfer-function or state-space form, discrete, continuous,
or stable. In addition, check can be used with the convert
keyword to change a system’s representation between SISO
state-space and transfer-function forms.
233

MATRIXX 7.0
Xmath User’s Guide
5.5.5 Time Response

The behavior of a dynamic system as a function of time in response to external
stimuli is referred to as the system’s time response. Xmath can simulate the
response of a dynamic system to various inputs to obtain the system's time
response. This is accomplished with the * operator between dynamic systems and
parameter-dependent matrices (PDMs) and with one or more of the functions in
Table 5-7.

Borrowing from the convenient frequency response notation for a system where
y(s) = H(s)*u(s), Xmath defines the operation system ∗ PDM as a time domain
simulation. Thus, for any dynamic system Sys (continuous or discrete) and for a
PDM u representing the external stimulus as a function of time, the operation
y=Sys∗ u creates a PDM y that contains the outputs of the system as a function of
time.

For a dynamic system with ny outputs and nu inputs, the input vector is defined
to be nu × 1 and the output vector is ny × 1. Thus, the input PDM u should be ny × 1
× Nsamp, where Nsamp is the number of time points in u.

■ The input PDM must have a regular domain.

■ If the system is discrete, the domain intervals must be equal to the system’s
sampling period.

■ If the system is continuous, it is discretized using the exponential (zero-order
hold) method, with the sampling interval set equal to the input domain
interval spacing. For accurate results, make sure this sampling interval is
small enough that discretization effects are negligible.

If you desire to run several simulations with different inputs, you can define a
PDM where columns contain the input vectors for the different simulations. Then
u will be ny × q × Nsamp, where q is the number of different simulations to be run.
The resulting y will be ny × q × Nsamp, with each column of the PDM
corresponding to a different simulation.

Table 5-7 Time Response Functions

impulse() Computes the impulse response of a system.

initial() Computes the unforced response of a system to a given initial
condition.

step() Computes the step response of a system.

defTimeRange() Computes a default time vector for simulations.
234

5

5
Data Objects and Operators
See 4.3.15 Strip Plots, p.145 for a explanation of how PDMs are plotted.

5.6 Strings

A string object is a sequence of characters enclosed by double quotes. To be
recognized as a string, an object must be created with double quotes or be the
output of the string() function, which converts numbers to strings.

■ You can concatenate strings with the plus (+) operator.

c="California";s="Sacramento";
str=""nThe capital of "+c+ " is "+s+"."

str (a string) =
The capital of California is Sacramento.

■ You can concatenate strings and then use them on the Xmath command line.

alias mypath "C:/myhomedir/myexamples/"
display mypath + "engine"
execute file = mypath + "engine"

■ You can group multiple strings into string matrices (also called tables) using
the same punctuation as matrices.

r=" rest"; i=" ice"; c=" compression"; e=" elevation";
rice=[r,i,c,e];ouch=[82,73,67,69];
sport=[char(ouch)',rice']

sport (a rectangular matrix of strings) =

 R rest
 I ice
 C compression
 E elevation

■ For strings, size() returns the number of rows and columns of the whole
string matrix.

size(sport)

ans (a row vector) = 4 2

To find the total number of elements (characters) in a string, use length().
235

MATRIXX 7.0
Xmath User’s Guide
length(sport)

ans (a scalar) = 35

5.6.1 Converting Strings and Numbers

Numbers can be converted to strings using the string() function, and strings to
numbers using makematrix().

aStr=string(32)

aStr (a string) = 32 # result is a string

aNum=makematrix(aStr)

aNum (a scalar) = 32 # result is a scalar

The displayed result looks the same; only the object type has changed.

The ascii() function returns the ASCII representation of a single character. The
char() function returns the character representation of a single character.

ascii("A")

ans (a scalar) = 65

char(65)

ans (a string) = A

5.6.2 Special Characters in Strings

Sometimes you may want to format your string output. You can insert a newline
with the sequence "n or char(10). To insert a tab, use the sequence "t or char(9). To
cause double quotes to appear in a string, use a pair of double quotes ("") or
char(34).

str=""n2 feet, 3 inches can be shortened to " + "2'3"".";

display str

2 feet, 3 inches can be shortened to 2'3".

You can use the DISPLAY command to display a string, variable, or the result of
an expression; only the string is displayed (the message ans (a string) = is
omitted.)
236

5

5
Data Objects and Operators
str1="A string must be enclosed in ";
str2="quotation marks. For example:"; nl=char(10); q=char(34);
test=nl + str1 + nl + str2 + nl + char(9) + char(10) + q +...

"What's next?" + q;
display test

A string must be enclosed in quotation marks. For example:

"What's next?"

For more examples see the MATRIXX online Help DISPLAY topic.

5.6.3 Manipulating Substrings

You cannot use conventional indexing (see p.194) to index into a string, but you
can index into a matrix of strings.

Create a matrix of strings:

mat=[65:69;97:101];m=char(mat(1:2,:))

m (a rectangular matrix of strings) =

 A B C D E
 a b c d e

Index into a matrix of strings:

bball="The N"+m(1,2)+m(1,1)+...
" is where the action is."

bball (a string) = The NBA is where the action is.

You can use the index() function to find the starting location of a substring within
a string.

i=index(bball,"ac")

i (a scalar) = 22

As mentioned earlier, length() returns the total number of characters in a string.
The function stringex() extracts a substring from a string, and the function
delsubstr() deletes all instances of a substring. Look up these functions in the
MATRIXX online Help, and note how you can use them to alter a string, as shown
in the following example:

bball2=stringex(bball, i, length(bball))

bball2 (a string) = action is.
237

MATRIXX 7.0
Xmath User’s Guide
bball3=delsubstr(bball, bball2)

bball3 (a string) = The NBA is where the

bball4=bball3+"money is."

bball4 (a string) = The NBA is where the money is.

5.7 Lists

Lists are created with the list() function. A list object can be thought of as a
collection or set of other objects. Each element in the list can be of any arbitrary
class, including another list. This makes nested lists possible. A list is one-
dimensional, in that it can only be addressed with a single index. The following is
an example list:

title="Gasoline Prices"; t=1:12; d=1:100;
fg=makepoly([1,2,-.9],"t"); p="p=polyval(fg/t)/d;";
L=list(title,t,d,fg,p)

L (a list with 5 elements) =

1:
 Gasoline Prices

2:
 1 : 1 : 12
3:
 1 : 1 : 100

4:
 2
 t + 2t - 0.9
5:
 p=polyval(fg/t)/d;

A single index can be used to access entire objects from the list.

p=polyval(L(4),L(2))'

p (a column vector) =

 2.1
 7.1
 14.1
 23.1
 34.1
238

5

5
Data Objects and Operators
 47.1
 62.1
 79.1
 98.1
 119.1
 142.1
 167.1

The plus (+) operator can be used to concatenate two lists.

5.8 Index Lists

An index list contains a list of indices or pointers into a vector, matrix, or PDM.
An index list looks like a matrix, but matrices cannot be used as lists. The function
find() outputs an index list, and you can create your own with indexlist().

An index list has either one, two, or three columns. If it has one column, it can be
used to index into a vector. If it has two columns, it can be used to index into a
matrix; the first column contains row pointers, and the second column pointers. If
it has three columns, it can be used to index into a PDM; the first column is used
for domain pointers, the second for row pointers, and the third for column
pointers.

set seed 0
m=hessenberg(random(4,4))

m (a square matrix) =

 0.211325 -0.563151 0.529676 0.288135
 -1.31969 1.47381 0.313928 0.0170223
 0 -0.599434 0.164669 0.00777988
 0 0 0.173159 -0.217164

Find the row and column location of each element smaller than 0, and assign the
value 3 to it:

lis=find(m<0)

lis (an index list) =

 1 2
 2 1
 3 2
 4 4
239

MATRIXX 7.0
Xmath User’s Guide
m(lis)=3

m (a square matrix) =

 0.211325 3 0.529676 0.288135
 3 1.47381 0.313928 0.0170223
 0 3 0.164669 0.00777988
 0 0 0.173159 3

The following example shows the use of a three-column indexlist with a PDM.
(For a complete discussion of PDMs, see 5.4 Parameter-Dependent Matrix (PDM),
p.207.) Using the above matrix, create a PDM with two dependent matrices:

mpdm=pdm(m,[1,2])

mpdm (a pdm) =

domain | Col 1 Col 2 Col 3 Col 4
-------+---
 1 | Row 1 0.211325 3 0.529676 0.288135
 | Row 2 3 1.47381 0.313928 0.0170223
-------+---
 2 | Row 1 0 3 0.164669 0.00777988
 | Row 2 0 0 0.173159 3
-------+--

The goal is to find all elements of mpdm in row 2 of a dependent matrix that are
greater than 0 and less than .5 and set them to 0.1. To do this, first find the location
of all elements of mpdm that meet the criteria:

mlis=find((mpdm > 0) & (mpdm < .5))

mlis (an index list) =

 1 1 1
 1 1 4
 1 2 3
 1 2 4
 2 1 3
 2 1 4
 2 2 3

The first column shows the domain, the second the row, and the third the column.
Extract the portions of the index list that index elements in row 2 of the dependent
matrices.

row2=find(mlis(:,2)==2)

row2 (an index list) =

 3
 4
 7
240

5

5
Data Objects and Operators
Create an indexlist that locates only the elements in row 2 of a dependent matrix
that meet the criteria used to create mlis.

rlis=indexlist(mlis(row2,:))

rlis (an index list) =

 1 2 3
 1 2 4
 2 2 3

Now, set all elements of mpdm that are greater than 0, less than .5, and in the
second row to 0.1:

mpdm(rlis)=0.1

mpdm (a pdm) =

domain | Col 1 Col 2 Col 3 Col 4
-------+---
 1 | Row 1 0.211325 3 0.529676 0.288135
 | Row 2 3 1.47381 0.1 0.1
-------+---
 2 | Row 1 0 3 0.164669 0.00777988
 | Row 2 0 0 0.1 3
-------+--
241

MATRIXX 7.0
Xmath User’s Guide
242

6

MathScript Programming
This chapter describes how you can combine MathScript expressions, statements,
commands, and functions to create MathScript programs.

Xmath handles MathScript functions (MSFs) and MathScript commands (MSCs)
you write in the same manner as it does Integrated Systems commands and
functions (see 3.5 Using Predefined Functions and Commands, p.85). MSCs and MSFs
can call other MSCs and MSFs, or call themselves recursively.

6.1 Overview

This section explains how to create a MathScript function (MSF) and a MathScript
command (MSC), giving you a brief overview of the scripting process along the
way. In subsequent sections, scripting will be explained in detail, and we will use
these samples as a point of reference.

6.1.1 Creating a Sample MSF

User-defined MSFs behave exactly like predefined functions; they take input
arguments, perform the statements in the body of the function using these
arguments, and return one or more outputs. Input arguments are not modified.
243

MATRIXX 7.0
Xmath User’s Guide
The sample MSF halfwave (Example 6-1) converts all values less than zero to the
value of zero. Go to your Xmath working directory and use a text editor to create
a file named halfwave.msf as shown.

Example 6-1 halfwave.msf

#{
 Function halfwave() has 1 required input argument
}#

Function out1 = halfwave(in1) # function declaration line
out1 = in1

 out1(find(in1 < 0)) = 0
endFunction

The file begins with an optional block comment (text enclosed in #{ }#). If
supplied, the comment serves as Help on this function if you supply a Help file
(see 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.249).1 The
function declaration is required. This declaration defines the function name, the
number and type of input arguments, and the number of output arguments.

To use halfwave, call the function just like any intrinsic MathScript function.

y = [1,0,-1,0,1,0,-1,0];
z = halfwave(y)

z (a row vector) = 1 0 0 0 1 0 0 0

6.1.2 Creating a Sample MSC

While MSFs return one or more new objects as outputs and cannot modify input
arguments (pass by value). MSCs do not return any values, but they can modify
input arguments (pass by reference).

As an example of a typical MSC, consider the command graphit (shown in
Example 6-2), which takes a single input and plots it on a log-log scale; a legend is
supplied if the input is a matrix. Inputs other than a vector or matrix invoke an
error message. Go to your Xmath working directory and use a text editor to create
the file shown in Example 6-2.

Example 6-2 graphit.msc

#{
GRAPHIT plots a numerical input.

1. This text will be displayed in the Local Help window when you type help halfwave in the
Command window command area.
244

6

6
MathScript Programming
}#

Command graphit indata # command declaration
if !is(indata,{scalar}) & !is(indata,{string})
 if is(indata,{matrix,!vector}) == 1
 plot (indata,{legend})?
 else
 plot (indata,{xlog,ylog,xmax=length(indata),
 ymin=min(indata), ymax=max(indata)})?
 endif
else
 error("Input is not worth plotting!","C")
endif

endCommand

The first line of the file after the optional block comment (#{ }#) section is the
command declaration. The command declaration is required. It defines the
command name, and the number and type of input arguments. Notice that the
arguments are not in parentheses as they are in functions.

To test this command, call it as follows:

a=[1:.01:3];[,c]=size(a);
k = a(1,100:125);
m = k .*. sin(a);
v=[a*5, a*2, a*4, a];
graphit c
graphit m
graphit v

In these examples, the argument to graphit is a single variable that requires no
parsing; in cases where the argument is a simple token—a single variable or
constant, you can separate the command name from the first argument with
white space only, and it works. If the first argument is more complex, such as an
expression, you must also place a comma after the command name. A comma
separating the command name from the first argument always works. The
example below illustrates this point.

Create the following MSC in your working directory:

Command add3nums arg1, arg2, arg3
arg1+arg2+arg3?
endCommand

The following usages of this command all work:

add3nums 1,2,3
add3nums a,b,d
add3nums a,b-c,d
add3nums a,b,d-c
245

MATRIXX 7.0
Xmath User’s Guide
The following produces an error message:

add3nums a-c,b,d

If you place a comma after the command name, however, the command works:

add3nums, a-c,b,d

6.1.3 General Rules for MathScript Programs

There are two types of names in MathScript programming: the MathScript name
and the filename.

■ MathScript names follow the same rules as variable names (see Rules for
Names on p.69).

■ MSF and MSC filenames must be lowercase, and they must match the
MathScript name.

■ All filenames must be unique. For example, creating both name.msf and
name.msc is ambiguous (the filename for Xmath to call is undefined).

6.1.4 MathScript File Formats

The file formats are shown in Figure 6-1 and Figure 6-2.

Figure 6-1 MSF File Format

#{
Optional Block Comment
that may be used for Help

}#

Function [out1,…outn]=fun_name(in1,…inN,{keywds})

MathScript instructions that operate on the
arguments.
Optional Return

endFunction
…

MathScript Function Format
246

6

6
MathScript Programming
Comment Header

The optional comment at the top of the file may serve as the online Help entry for
your MSF or MSC. To display your Help for your MSF or MSC in the Local Help
window type:

help script_name

Declaration

The first line of code following the comment Help block is the declaration, which
defines the number of input and output arguments. Required arguments are
placed before the braces, while keywords are defined inside the braces.

■ Files must end with the appropriate end statement (endCommand or
endFunction) followed by a carriage return (blank line).

■ There can only be one user-defined command or function in an MSF or MSC
file (see Example 6-3, p.254 and Example 6-4, p.255 for extended examples of

Figure 6-2 MSC File Format

MathScript Command Format

#{
Optional Block Comment
that may be used for Help

}#

Command command_Name in1,…inN,{keywds}

MathScript instructions that operate on the #
arguments.

Optional Return

endCommand
…

NOTE: See 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.249 for
additional information about creating online Help for your MSF or MSC.
247

MATRIXX 7.0
Xmath User’s Guide
MSCs and MSFs). MSOs (see p.259) allow for more than one function or
command to be declared in a file. An optional return statement can be used to
exit before the endFunction or endCommand statement.

Void Function Declaration

Although the discussion and examples show both input and output arguments,
you can define a void function that has no outputs. The syntax of this function
declaration is as follows:

function [] = void_func_name(in1,...inN, {keywds})

6.1.5 MathScript Programming

This section gives an overview of MathScript programming. Some of the
functions mentioned here are also discussed in 6.3 Programming, p.256.

For a detailed description of any function or command provided by Integrated
Systems, see the MATRIXX online Help.

Assigning Default Values

Optional arguments and keywords typically have default values that will be used
if the argument is not specified. The DEFAULT command assigns a default value
to the specified argument. In the following function syntax, kwd1 is given a
default value of 5.0, and kwd2 is assigned "Earth" by default.

function [out1,out2,out3]=funName(in1,in2,{kwd1,kwd2})
DEFAULT kwd1 = 5.0
DEFAULT kwd2 = "Earth"

...

Output Keywords

For MathScript programs, output keywords provide a feature whereby desired
output can be selected directly by name rather than positionally. For example,
consider an MSF defined with this prototype:

[o1,o2,o3] = function myfun(i1)

To access only the third output of an MSF, use one of the following methods:
248

6

6
MathScript Programming
■ Skip the first two outputs like this:

[,,thirdout] = myfun(a)

■ Use output keywords like this:

[thirdout = o3] = myfun(a)

For a general discussion of keywords, see p.86.

Calling Void Functions

When you call a void function, you must use the following syntax:

[] = void_func_name(...)

See Void Function Declaration on p.248.

Variable Scoping

All variables created within MathScript functions and commands are local unless
you use an explicit partition name (partitionName.variableName). Remember, you
cannot change partitions within a program.

For MSFs, input arguments are passed by value. This means that functions cannot
alter the values of their arguments. Output arguments requested by the caller are
copied back to the scope of the caller.

For MSCs, arguments are passed by reference and can alter the values of their
arguments, rename them, or delete them altogether if the argument is a variable
name.

6.1.6 Creating Online Help for User-Defined MSFs and MSCs

You can provide online Help for your MSF or MSC in one of the following ways:

■ Provide a Help file in the same directory as your MSF or MSC.

■ Allow Xmath to use the block comment at the top of your MSF or MSC if you
do not provide a Help file.

NOTE: If you get an error message from Xmath indicating that your file is
incomplete, your file may be missing an ending carriage return.
249

MATRIXX 7.0
Xmath User’s Guide
When you try to bring up Help for your MSF or MSC by typing the following
command

help script_name

Xmath follows these steps:

1. Xmath searches for the Help topic name in the standard Xmath Help project
file (help.hpf).

If Xmath finds your Help topic, it displays it in the MATRIXX Help window.

2. If Xmath does not find an Xmath Help topic, it looks in the local Help project
file (local.hpf).

If Xmath finds your Help topic, it displays it in the Local Help window.

3. If Xmath does not find the Help topic in the local Help project file, it looks in
the same directory as your MathScript file for a Help file with the name
script_name.html,script_name.htm, or script_name.txt.

If Xmath finds your Help file, it displays it in the Local Help window and
appends the topic name to the local.hpf file.

4. If Xmath does not find a Help file, it goes to the MathScript itself, extracts the
text in the comment section at the top, and creates a text file (script_name.txt)
that contains the extracted information.

On UNIX systems, Xmath stores the script_name.txt file in your home directory.
On Windows systems, Xmath stores the script_name.txt file in your home
directory if the home directory is defined; otherwise, Xmath stores the file in
%XMATHTMPDIR%.

Xmath displays the Help topic in the Local Help window and appends the
topic name to the local.hpf file.

6.1.7 Using User-Defined MSFs and MSCs

Your MSF or MSC can be called in the same way as Xmath functions and
commands. However, Xmath must know where to look for them.

NOTE: On UNIX systems, local.hpf is in your home directory. On Windows
systems, local.hpf also exists in your home directory if the home directory is
defined; otherwise, you can find local.hpf in %XMATHTMPDIR%.
250

6

6
MathScript Programming
Search Paths

When you call a MathScript program, Xmath looks for it in the search path using
the following criteria:

■ The current working directory (.) is put in the search path when Xmath starts
up.

■ The search path is searched only upon the first call to the MSF or MSC.

■ You can use DEFINE and UNDEFINE to select or deselect an MSF or MSC.

For example, if halfwave.msf is not found in the search path, you receive the
following message:

File halfwave not found

If this occurs, add the new directory to the search path with the command set path
"directory" where directory can be any valid directory path string. Assuming
halfwave.msf is in the subdirectory myScripts, you add its path as follows:

set path "myScripts"
show path

1) .
2) myScripts

Manipulating Search Paths

If the file graphit.msc is in the directory test, you can add this entry to the Xmath
search path as follows:

set path "test"
show path

1) .
2) myScripts
3) test

To remove an entry from the Xmath search path, use the REMOVE command and
the path number.

remove path 2
show path

1) .
2) test
251

MATRIXX 7.0
Xmath User’s Guide
To handle paths through a file selection box, use Select File→Set Path. In the
Directories field (of the Set Path dialog shown below), double-click on the directory
you want for your search path, and then click OK.

DEFINE

By default, Xmath looks for built-in functions and commands (see 3.5 Using
Predefined Functions and Commands, p.85) before searching user paths. The
DEFINE command explicitly associates an MSF or MSC with a MathScript name.
It is useful for accessing functions that are not in the search path. For example, the
Xmath function hilbert() is stored in the following location:

whatis hilbert

hilbert is an ISI function (path/hilbert.xf)
252

6

6
MathScript Programming
where path is the path to your Xmath installation. Suppose we have an MSF called
hilbert.msf located in a subdirectory called funs, and we would rather use it for
Hilbert computations. To make and verify the change, type:

define hilbert, {directory = "funs"}
whatis hilbert

hilbert is a Mathscript function (funs/hilbert.xf)

All calls to the hilbert() function will now use the function located in funs instead
of the predefined function. To retrieve the predefined function, release your local
version of hilbert() (and then verify with the whatis() function):

undefine hilbert
whatis hilbert

hilbert is an ISI function (path/hilbert.xf)

For more information on DEFINE and UNDEFINE, see the MATRIXX online Help.

MathScript Program Compilation and Execution (.xf, .xc)

When a program is defined or called for the first time, Xmath compiles the
program and stores the resulting binary code in an .xf or .xc file, depending on the
file type. See Figure 6-3.

When halfwave is called again, the Xmath interpreter checks the last modified
dates of halfwave.xf and halfwave.msf. If halfwave.msf is more recent, the ASCII
.msf file is recompiled, overwriting the existing .xf file. After compilation, the new
halfwave.xf binary file is executed.

You can use the following command to turn off file usage time stamp checking:

SET AUTOCOMPILE OFF

If you know that you will not be modifying a source file, this can improve the
speed of a task such as calling an MSF in a loop.

Figure 6-3 Compile Process for an MSF

halfwave.msf halfwave.xf

MathScript ASCII Source Compiled MathScript Code

(compile)
253

MATRIXX 7.0
Xmath User’s Guide
If a new version of Xmath is installed, old local .msf and .msc files are
automatically recompiled.

6.2 Examples

Example 6-3 provides a sample user-defined MSF called pdm2mx. This MSF
changes a PDM to a matrix of the same dimensions as the input matrix. This is to
reverse any PDM formatting so that you can compare a PDM’s dependent
matrices with the source matrix for the PDM.

Example 6-3 pdm2mx.msf

#{--
Destructs a PDM to a matrix of the same dimensions as the input
matrix. Idea is to reverse any PDM formatting so that you can compare
a PDM's dependent matrices with, for example, the original matrix the
PDM was created from.

Syntax: Function [mat,same]=pdm2mx(m,p)
Inputs: m A matrix to compare to the elements of a PDM.

p A PDM with elements you wish to organize in a
matrix of the same dimensions as m.

Outputs: mat A matrix of elements of p formatted according to m.
same If mat and m are the same, same=1. If not, same=0.

--
}#
Function [mat,same]=pdm2mx(m,p)
[mr,mc]=size(m); [pr,pc,pl]=size(p);

if is(m,{matrix}) & is(p,{pdm}) & mr*mc==pr*pc*pl

 if mr==pr & mc==pc
 mat=makem(p')';
 else
 mat=makem(pdm(makem(p')',{rows=mr, columns=mc}));
 endif
if any(mat-m) <> 0; same=0; else same=1; endif

else
 error("Matrix and PDM must have same number of elements.","C")
endif
endFunction
254

6

6
MathScript Programming
A call to pdm2mx might be:

b=rand(6,3)? bp=pdm(b,{rows=3,columns=6})
[,same]=pdm2mx(b,bp)

The command plotspectrum in Example 6-4 takes PDM input and plots the
original wave and its magnitude spectrum in the Graphics window. plotspectrum
uses check to see if the input is a PDM. If the input is a PDM, the length of the
PDM channels is returned from length() to the variable len.

Example 6-4 plotspectrum.msc

#{plotspectrum first uses check() to see if the input is a PDM. If the input is
a PDM, the length of the PDM channels is returned from length() to the variable
len. The domain of the PDM is a vector stored as in am.}#

command plotspectrum input

stat = check(input, {pdm,abort});len = length(input);
dm = domain(input);

#compute the fft of the input, and the frequency range

qPDM=fft(input,{channels});
res =(len-1)/(len*(dm(len)-dm(1)));
dmF=(0:res:(len-1)*res);
output = pdm(abs(makematrix(qPDM)), dmF);

#{set up the frequency axis label. The x label on the spectral graph is
generated using + to append strings together. The final string is stored in
xLab.}#

xLab = "Frequency (resolution = " + string(res) + ")";

#{ The first call sets up the plot format. By default in the first graph, the
time series graph is placed in row 1.}#

t = plot(input,
 {rows=2,title = "original wave",
 y_lab = "amplitude", x_lab = "time (sec)"})?

#{The second plot call plots the spectrum in the second row).}#

t = plot (output, {keep, row=2, y_log, x_lab = xLab,
y_lab = "Log Magnitude", title="Spectrum"})?

endCommand

A typical call to plotspectrum looks like:

time = 1:1:256; wave = pdm(cos(5*time), time);
plotspectrum wave

The Graphics window will display the time and spectrum plots.
255

MATRIXX 7.0
Xmath User’s Guide
6.3 Programming

This section describes MathScript functions, commands, and constructs used for
programming.

6.3.1 Iterative and Conditional Looping Statements

Loops provide the ability to repeat a command or sequence of commands, either
for a fixed number of iterations, or until some criterion is met. You can also exit a
loop with the EXIT statement as described in the MATRIXX online Help.

For

The For command executes a statement or a set of statements for a specified
number of iterations. If a statement contains a variable on which the loop_variable
operates, the order of execution is as follows:

■ If the variable is a column vector, the order is top to bottom of the column
vector.

■ If the variable is a matrix, the order is by columns, moving from left to right.

■ If the variable is a row vector, the order is from left to right.

The For loop syntax is as follows:

For loop_variable = vector
 statements
endFor

A line break acts as a terminator in this construct. A comma, a semicolon, or the
DO keyword can be used. For example, the following formats are correct:

For x=1:n, statements; endFor
For x=1:n; statements; endFor
For x=1:n DO statements; endFor

While

A While loop iterates as long as a conditional expression is TRUE. The While loop
can be structured as follows:
256

6

6
MathScript Programming
While conditionalExpression
 statements
endWhile

WHILE conditionalExpression, statements; ENDWHILE
WHILE conditionalExpression; statements; ENDWHILE
WHILE conditionalExpression DO statements; ENDWHILE

If

If executes a statement or set of statements when a particular condition is met; if
the condition is not met, any else or elseIf statements are executed.

The syntax for an if statement is:

If condition
 statements
elseIf condition
 statements
else
 statements
endIf

A line break acts as a terminator in the above construct, or a comma, a semicolon
or the THEN keyword can be used. For example, the following variations are
correct:

IF condition, statements ELSE, statements ENDIF
IF condition; statements ELSE, statements ENDIF
IF condition THEN statements ELSE, statements ENDIF

For example:

if input < cost
 display "Please deposit: "+ string(cost-input)+ " cents"
elseif input > cost
 display "Your change is: "+ string(input-cost)+ " cents"
else
 display "Thank You."
endIf

Or, for example:

IF in1 | in2 < 1 THEN x=0; ELSE x=1; ENDIF
257

MATRIXX 7.0
Xmath User’s Guide
Goto and Labels

A goto and corresponding label can be defined in a MathScript function (MSF),
MathScript command (MSC), or MathScript object (MSO) file (not in a .tt

 file); goto cannot be used interactively. The goto command causes a jump to a
specific label in the program. A label is a name enclosed in angle brackets; labels
must be unique within a script.

For example, an MSF, MSC, or MSO file might have the following:

If input > cost & change < input-cost
 GOTO exact # jump to <exact>
endIf

#{
definition of label exact
}#
<exact>

display "Please use exact change only."

6.3.2 Object Query Functions

These functions are useful for testing the validity of input arguments of
MathScript entities. To see the full set of available keywords for each function, see
the MATRIXX online Help.

exist()

exist() checks to see if an object is defined with the given name. exist() returns
TRUE (1) if the object is defined, and FALSE (0) otherwise.

a = 1; exist(a)

ans (a scalar) = 1

delete a
exist(a)

ans (a scalar) = 0
258

6

6
MathScript Programming
check()

check() performs multiple checks on a variable and prints out error messages (by
default); check() is similar to is (see p.260), but has additional features including
error reporting, two-input comparisons, and conversions between different object
types. Both functions are useful in programming and often used interchangeably.

check() only operates on variable names (you can use is if your input is an
expression); check() can also compare certain properties of two inputs, such as
sameClass or sameRate. See the check topic in MATRIXX online Help for a listing
associated keywords.

■ By default, check() automatically reports an error when the keyword list does
not match the input object. If you type:

a = [1,2,3,4];
t = check(a,{symmetric})

t (a scalar) = 0 is displayed in the log area, and the following message appears
in the error log window:

Specified argument to check must be symmetric.

■ To turn off reporting, specify !report in the keyword list; the status of check()
is still displayed in the log area, but the message is suppressed.

The abort keyword highlights a specific argument and returns an error
message; the statement does not execute until the appropriate correction is
made.

■ check() can accept two inputs, and compare them:

a = [1:4]; b = [3:5];
check(a,b,{samelength, !report})

ans (a scalar) = 0

■ check() can be used to make the following conversions:

● single channel PDM ↔ vector

● polynomial ↔ vector

● row ↔ column

When the convert keyword is used, the input is a variable; if all keyword
requirements are met, the input variable is converted to the appropriate
keyword format.
259

MATRIXX 7.0
Xmath User’s Guide
p=pdm([4:-.675:2])

p (a pdm) =

domain |
-------+--------
 1 | 4
 2 | 3.325
 3 | 2.65

[status,p]=check(p,{real,matrix,convert})

status (a scalar) = 1

p (a row vector) = 4 3.325 2.65

check() converts p from a PDM to a vector. See the MATRIXX online Help
check topic for a complete description of check() and its keywords.

is()

is() accepts a variable name or an expression as an input, and then determines if
the input variable is of the type specified in the keyword argument. is() returns 1
if TRUE and 0 if FALSE.

tmatrix = [1,3;0,1];
is(eig(tmatrix), {identity})

ans (a scalar) = 0

is(tmatrix, {triangular})

ans (a scalar) = 1

is() can be used to report errors as follows (note that the error() function can only
be used in a MathScript program):

if !(is (a,{symmetric})); error("Argument must be symmetric.")? endif

Many keywords can be used with is(); see is() and check() in the MATRIXX
online Help for details about these keywords.

6.3.3 User Interface Functions

Xmath provides the simple graphical user interface functions getline(),
getchoice(), pause(), error(), and beep(). For more sophisticated tools, see
Chapter 9.
260

6

6
MathScript Programming
getline()

getline() pops up a dialog box with a prompt asking for input.

response = getline("Enter input here:")

The dialog box appears:

You will not be able to enter text in the Command window until the dialog box is
closed. If the string returned from getline() must be converted into a number, use
the makematrix() function (it is overloaded to handle strings).

response (a string) = 2.333

response = makematrix(response)

response (a scalar) = 2.333

getchoice()

getchoice() pops up a dialog with choices defined by an input string matrix. By
default the dialog will have radio buttons, which allow only one choice. If the
multiple keyword is used, the dialog will have check boxes, which allow more
than one selection. If the keyword defaultChoice is specified, certain choice(s) are
pre-selected when the dialog appears.

choice = getChoice("The title",["Choice 1";
"Choice 2";"Choice 3"],{defaultChoice=3}
261

MATRIXX 7.0
Xmath User’s Guide
The output variable returns the user ’s choice(s) as a scalar or vector.

pause()

This command displays a dialog with a button that must be pressed before Xmath
will continue. pause() is commonly used in .ms files to view a graph in the
Graphics window.

If a string is added to the pause() command, that string will appear in the Xmath
Pause dialog.

plot(1:10)
pause "press Continue to see the next plot"
plot(random(1,10))

You can disable pause() with the following command:

set pause off
262

6

6
MathScript Programming
error()

error ()can only be used inside MathScript entities. You supply a severity code of
W, C, S, or F to signify the type of error: warning, confirmation, strong warning, or
fatal. The operating system and the error severity determine where the error is
displayed:

■ For all operating systems, F aborts execution; the instruction remains in the
command area with the error highlighted, and the error message displayed in
the message area.

■ On Windows operating systems, all error messages remain in the Xmath
Commands window; W, C, and S settings display your message in the log area.

■ On UNIX, C and S settings display a dialog with the error message you
specified. W writes your message to the message area.

See the MATRIXX online Help for additional details.

if is(Input2, {!matrix})==1
error("Not a matrix!", "F", Input2)

endif

If the error criterion is met, the string Not a matrix! is written to the commands
window message area.

beep()

beep() causes an audible beep; on UNIX, it also displays a popup.

beep "this is a test"
263

MATRIXX 7.0
Xmath User’s Guide
6.3.4 Indexing Functions

This section is a brief overview of indexing functions that are useful in programs.
For detailed descriptions of these functions, see the MATRIXX online Help.

index()

index() finds the starting location of a substring within a string. If the substring is
not found -1 is returned.

s="What is the meaning of this?";
i=index(s,"this")

i (a scalar) = 24

find()

find() returns an index list of the elements in the matrix that meet the specified
condition. An index list is a matrix containing the row and column locations (the
indices) of all elements that meet the condition.

a = [20,4,-14;30,-65,0;48,582,29]

a (a square matrix) =

 20 4 -14
 30 -65 0
 48 582 29

elements = find(abs(a)>25)

elements (an index list) =

 2 1
 2 2
 3 1
 3 2
 3 3
264

6

6
MathScript Programming
6.4 Using the Xmath Debugger

The Xmath Debugger can be controlled interactively from the Debugger window
(Figure 6-4), or from the Commands window command line. The command line
debugger is the only available method for Windows users and anyone running
the tty version. This section describes both interfaces.

Figure 6-4 Xmath Debugger Window in Debug Mode (UNIX)

Menu Bar

Debug Mode

Buttons

Error
Message

Filename
Line #

Suspected
Error

Location of
265

MATRIXX 7.0
Xmath User’s Guide
Note that debug mode starts under three circumstances:

■ A call is made to a program that is set up for debugging.

■ A program contains a syntax error. A syntax error is an error in punctuation,
for example, a missing brace: plot(a,{xlab="A missing brace").

■ A program contains a runtime error. A runtime error occurs when an
instruction is impossible to process. The following statement would cause a
runtime error because the objects are incompatible: x=5 + "hello".

6.4.1 Debug

You can use the debug command to define and set break for a program. In the
command window command area, type:

debug program_name

If you activate debug for a program, the debugger opens automatically on the first
executable line in the script whenever you call the entity. While in debug mode
you can step through your file and evaluate any expression or run any command.
In addition, the NEXT and SET BREAK commands can be used to debug nested
functions.

6.4.2 Debug Mode

In addition to the above cases (where you are intentionally debugging a specific
MSF or MSC), a programming error also invokes the Debugger window in debug
mode (see SET DEBUGONERROR).

Entering Debug Mode

■ All windows say “(Debugging)” in the title area (at the top) when you are in
debug mode. In the Debugger window, the full filename of the entity being
debugged is displayed just below the menu bar.

In the command line debugger, the command prompt will change to:
(program)Debug>.

■ If the Debugger window was opened because the file contains a syntax error,
the Next button is enabled (see Figure 6-4). If there are multiple errors, the Next
266

6

6
MathScript Programming
Message and Previous Message button is also enabled. You can repair a syntax
error, then continue to step through your file or look at the previous message.

Stepping Through a Script

■ In the command line debugger you can step forward, using the next
command, or continue execution with the go command.

■ You can set and remove break points from the Debugger window or the
command line (see 6.4.3 Setting, Showing, and Removing Breakpoints, p.268).

■ You can set and remove watch points from the Debugger window or the
command line (see 6.4.4 Setting and Removing Watchpoints, p.269).

Exiting Debug Mode

■ To stop debugging from the Debugger window, click End Debug.

■ To stop debugging from the command line, type abort.

In the Debugger window, the word Debugging disappears from the title area of all
windows. This mode is referred to as Edit mode.

To close the window select File→Close Window. To stop debugging and close the
debugger in one step, place the cursor over the Debugger window and type Ctrl-W
(for workstations only).

Editing a File in the Debugger Window

When the Debugger window is not in debug mode, it is acts as an editor. To fix
your script, click into the Debugger window and make your change. If you modify
the script via the Debugger window, the Save and Revert buttons become active,
and you can no longer step through. Before saving, make sure that the script file is
not open in any other editor.

The Debugger window provides the same simple editing capabilities available
from the Xmath Commands window command area (1.6.3 Command Area, p.18).
You can manually open the debugger by selecting Windows→Debugger. To edit a
file, select File→Open. The file appears in the window. Once you make a change,
the Save and Revert buttons are activated.
267

MATRIXX 7.0
Xmath User’s Guide
SET DEBUGONERROR

The environmental setting debugonerror determines the mode in which the
debugger will appear.

■ The default setting is On. If an error is detected in a program, Xmath opens
the debugger and redirects focus to the Xmath Debugger window (see p.266).

■ If debugonerror is set to On, and you have activated debugging for a program
with debug program_name, the debugger opens in debug mode whenever the
entity is called.

■ If debugonerror is set to Off, and you have activated debugging for a program
with debug program_name, the debugger opens whenever the entity is called,
but focus stays in the Commands window.

6.4.3 Setting, Showing, and Removing Breakpoints

A breakpoint causes the debugger to stop execution at a specific line number in
the source, provided that set debugonerror on is in effect (the default).

■ If you issue the command DEBUG NAME a break is automatically set on the
first executable line of the script, causing the debugger to open whenever that
script is called.

■ You can set a breakpoint interactively in the Debugger window, or from the
Commands window command area.

● To set a breakpoint in the Debugger window, position the cursor in the line
where you want to break execution, then press the Set Break button. Note
that when you position the cursor in the Debugger window, the line
number is shown below the filename on the upper left.

or

● Go to the command area and type:

SET break lineNumber

■ To see a list of the breakpoints you have set, go to the command area in the
Commands window and type:

NOTE: In order to set a breakpoint interactively, the file in which you wish to set
or remove breakpoints must currently be open in the Xmath debugger in debug
mode.
268

6

6
MathScript Programming
SHOW break

A list of breakpoints will appear in the format fileName:Line_Number. You
will see breakpoint line numbers for all entities that have debugging enabled.

■ Breakpoints can be removed via the Commands window with the REMOVE
command. (Again, you must be viewing this script in debug mode.) Go to the
command area and type:

REMOVE break lineNumber

As mentioned earlier, all scripts that have been called or explicitly defined
automatically have a breakpoint set on the first executable line. Type SHOW
debug to see the files you are debugging.

■ To run a file without stopping at its breakpoints, go to the command area and
type:

DEBUG program_name off

Note, however, if the script contains an error, the debugger will open
regardless.

6.4.4 Setting and Removing Watchpoints

A watchpoint causes the debugger to stop execution whenever a watched
variable is modified.

You can set a watchpoint interactively in the Debugger window, or from the
Commands window command area. The script containing the variable you want to
watch must currently be shown in the debug window in debug mode:

■ To set a watchpoint interactively, go to the Xmath Debugger and highlight the
variable you want to watch, then press the Set Watch button.

■ To set a watchpoint with the set command, go to the commands window
command area and type:

set watch varName

Now you can use the Commands window to display the values of variables that
are local to the current MSF or MSC.

To see a list of the variables you are watching, go to the Commands window
command area (while in debug mode) and type:

show watch
269

MATRIXX 7.0
Xmath User’s Guide
A listing appears in the format functionName:varName.

Watchpoints can be removed via the Commands window with the remove
command. The entity containing the watchpoints you want to remove must
currently be shown in the debug window in debug mode. Go to the Command
window command area and type:

remove watch varName

If you want a function to run without stopping at the watchpoints but you do not
want to remove them, type

debug program_name off

in the command area.

6.4.5 Debugger Window Interface

This section describes the Xmath Debugger ’s user interface.

Fields

The filename of the function being debugged is displayed just below the menu
bar.

The top field in the window contains the source of the MSF or MSC that you are
debugging. The line that is about to be executed is highlighted (unless there are
errors in the function, in which case the highlighted line points to the error). The
source field is read-only unless you have write privileges to the source file. The
middle field is the message area. Status and error messages that occur while
debugging are displayed here.

Menus

The enabled menus are the File menu and the Windows menu. The File menu
allows you to edit another MSF or iconify the debugger. The Windows menu
allows you to quickly find other Xmath windows and bring them to the
foreground.
270

6

6
MathScript Programming
Buttons

Next Message — Enabled when there are multiple errors. This button highlights
the next line that contains an error (assuming you are not at the bottom of the
list).

Previous Message — Enabled when there are multiple errors. This button
highlights the previous line that has an error (assuming you are not at the top
of the list).

Redisplay — Refreshes the window.

Edit On/Off — Toggles the source to be editable or read only. You may want to
toggle edit off to prevent accidental edits.

Save — Enabled whenever you make changes to the source. Pressing this button
saves your changes to the file.

Revert — Discard edit changes and load the last saved version of the file.

Next — Executes the next line of code.

Go — In debugging, causes the function to run until a break point is encountered,
a watched variable is modified, or the end of the file is reached.

Rerun — Enabled after source changes have been saved. Press to rerun the
function with previous inputs.

Set Break — Sets a breakpoint on the current line (where the cursor is in the source
field). Xmath will pause function execution at any breakpoint(s) you set. To
do this from the command area, see the MATRIXX online Help under set
break.

Set Watch — Sets a watch on a variable. To watch a variable, use the pointer to
highlight the variable name, then press this button.

End Debug — Exit debug mode; no arguments will be returned from the function.
271

MATRIXX 7.0
Xmath User’s Guide
6.5 Advanced Topics

This section includes the following topics:

■ Variable arguments

■ Executing a function at a specific directory

■ Partition and variable directory functions

■ MathScript command output and error capture

■ Programming for platform independence

6.5.1 Variable Arguments

When you use the colon (:) index operator in a MathScript entity declaration, the
program handles a variable number of inputs, outputs, or keywords. The function
argn() returns the number of a program’s arguments, while argv() extracts the
value and name of the argument.

argn()

argn() returns the number of inputs (the default), keywords, or outputs for a
MathScript entity (see Example 6-5). To get the number of keywords, specify the
keyword, keywords; to get the number of outputs, specify the keyword, outputs.

Example 6-5 argn()

function [args]=howmany(:)
 args=argn()
endfunction

Example 6-5 counts the number of inputs. For example, howmany(1,1,1,1) returns
4.

argv()

argv() allows you to index into the inputs, keywords, or outputs for a program.
argv() can return the value and/or name of the argument; for argv() to return the
name of the argument, however, it must be a keyword. To return the name of an
272

6

6
MathScript Programming
output, the calling statement must use output keywords (see Output Keywords on
p.248).

Using argn and argv

Example 6-6 uses the argn() to determine the number of inputs and loop over
them accordingly. argv() gets the value of each argument, and then the length is
determined for the output.

Example 6-6 argv() combined with argn()

function out=howlong(:)
n=argn();
for i=1:n
 in=argv(i)
 out(i)=length(in);
endfor
endfunction

x=howlong(rand(2,3),1:7,pdm(ones(4,5),{rows=2}))?

x (a column vector) =

 6
 7
 10

Example 6-7 accepts any number of scalars; it displays a message when the
keyword reply is specified but not otherwise.

Example 6-7 msg.msf

function [out]=msg(:,{reply})

ni=argn()
nk=argn({keywords});
[v,n]=argv(ni);
ni=ni-nk;
if n=="reply"
 key=1;
else
 key=0;
endif

for i=1:ni
 if is(argv(i),{!scalar})
 error("Scalars Only!", "C");
 else
 out(i)=argv(i);
 endif
273

MATRIXX 7.0
Xmath User’s Guide
 if key==0 & i==ni
 out;
 endif
 if key==1 & ni==1
 display "Thanks for the scalar!" ;
 elseif key==1 & i==ni
 display "Thanks for the " + string(ni) + " scalars!" ;
 endif
endfor

endfunction

msg(1,1000,pi,{reply})

Thanks for the 3 scalars!

ans (a column vector) =

 1
 1000
 3.14159

msg(5,5,9)

ans (a column vector) =

 5
 5
 9

Example 6-8 provides the function varargs(), which has a variable number of
outputs, inputs, and keywords. In the following call:

[out1=fop1,out2=fop2]=varargs(1,2,3,{k=9})

Note that we define two outputs (fop1, fop2), three inputs, and one keyword (k).

Within the function, argn() is used to determine the number of arguments, and
argv() is used to determine the name of the arguments. Note the use of the
[value,name]=argv(i,{keywords}) syntax for inputs and keywords and the
name=argv(i,{outputs}) syntax for outputs. Note also that the function itself does
not assign a value to the outputs.

The output of the above call appears in Example 6-9. The names of the keyword
and the outputs appear in the output stream; the names of other input arguments
are NULL.

Example 6-8 varargs.msf Using argn and argv

function [:] = varargs(:,{:})
274

6

6
MathScript Programming
for i=1:argn({keywords})
[v,n] = argv(i,{keywords})? # display value and name of
end # keyword inputs
display “---”n”

for i=1:argn({!keywords})
[v,n] = argv(i,{!keywords})? # display value and name
end # of non-keyword inputs
display “---”n”

for i=1:argn()
[v,n] = argv(i)? # display value and name
end # of all inputs
display “---”n”

for i=1:argn({outputs})
n = argv(i,{outputs})? # display name of all outputs
end

endfunction

Example 6-9 Output of varargs.msf

v (a scalar) = 9
n (a string) = k
--
v (a scalar) = 1
n is null
v (a scalar) = 2
n is null
v (a scalar) = 3
n is null
--
v (a scalar) = 1
n is null

v (a scalar) = 2
n is null
v (a scalar) = 3
n is null
v (a scalar) = 9
n (a string) = k
--
n (a string) = fop1
n (a string) = fop2

To assign values to the outputs fop1 and fop2, the function needs an assignment
statement(s), which must be a text string. For example, the following loop assigns
the outputs with the values 1 and 2, respectively:

for i=1:argn({outputs})

 n = argv(i,{outputs})
275

MATRIXX 7.0
Xmath User’s Guide
 execute n + "=" + string(i) + ";"; # assign i to the i'th output

endfor

6.5.2 Executing a Function at a Specific Directory

The function assignment syntax used in calling an LNX in background mode
allows a directory to locate the function to be specified with a keyword. For
example:

[out] = (define myfunc, {directory="mydir"})(1,2,3)

where Xmath calls the MSF or LNX function myfunc() in the directory mydir,
leaving an existing definition of myfunc() unchanged.

6.5.3 Partition and Variable Directory Functions

The function directory() allows directory listings of Xmath partitions and
variables to be captured as vectors of string names. The directory() function
requires one input, a string containing a wildcard as used in the command WHO,
and produces one output, a vector of names of partitions and variables as
produced by the command WHO using the specified wildcard. The names are
always full names, and the partition name is always prefixed. The syntax is
shown in the following example:

out = directory("main.*")

where the variable out will contain a vector of strings of the variable names found
in main (for example, main.a, main.b, etc.).

6.5.4 MathScript Command Output and Error Capture

The following syntax allows the textual output and error messages of a
MathScript command to be captured in MathScript variables as string values:

[outputs = format, errors] === statement

or

[outputs, errors] === statement
276

6

6
MathScript Programming
where outputs and errors are MathScript variable names and statement can be any
valid MathScript statement. The format keyword formats the output in a
command-dependent way; see the examples below for details.

If the outputs variable is specified, the textual (nongraphical) outputs of
statement, if any, are inserted into the outputs variable instead of displaying in the
Xmath log area of the Commands window. If the outputs variable is omitted, the
output of statement is displayed normally.

If the errors variable is specified, Xmath will suppress normal processing (error
location highlighting, bringing up the Debugger window, and stopping command
execution) of any errors generated by statement. Instead, the error messages are
converted to text and inserted into the errors variables. If errors is omitted, Xmath
performs normal error processing of errors generated by statement.

This error capture feature allows a program to perform error handling of
commands that may fail as shown in the following Examples section.

Examples

In the following example of error handling, if the variable name contained in the
string varname is a legal Xmath variable name, err would be a null; otherwise, err
would contain an error string. For example:

varname = getline("Please enter an Xmath variable name:");
[,err]===execute varname + "=1;"

In the following example of error handling, any error calling myfunc is converted
into an error message and inserted into err as a text string:

[,err] === myfunc(123)

In a similar example, the variable out captures the output of the Windows dir
command in a string:

[out] === oscmd("dir")

In the following example, out contains a formatted version of the captured
output:

[out=format] === statement

Currently, the WHO and SHOW PARTITIONS commands support this
formatting. The directory() function described in 6.5.3 Partition and Variable
Directory Functions, p.276 uses both these commands. For example,
277

MATRIXX 7.0
Xmath User’s Guide
DIRECTORY("main.*")

actually executes this statement:

[out=format] === who main.*

The captured output is a vector of strings containing the names of the variables in
the partition main.

When [out=format] is used with other statements that don’t support formatting,
the captured output will be a vector of strings, each of which contains a line of
output. By default, the length of the row vector out is the number of strings (and
therefore the number of lines in the captured output). You can transpose out to see
the output strings as they are normally displayed in the Xmath log area.

[out=format] === rand(2,2)
size(out)
out'?

6.5.5 Programming for Platform Independence

While MathScript is portable across UNIX and Windows platforms, calls to the
operating system are platform-dependent. For example:

oscmd("ls *.xmd") # UNIX
oscmd("dir *.xmd") # Windows

With the MathScript function platform(), you can program a command so that it
can be run on either platform. For example:

if platform() == "UNIX"
 oscmd("ls *.xmd") # UNIX
else
 oscmd("dir *.xmd") # Windows
endif

Another problem area with cross-platform programming is the directory path
name syntax difference. The get({path}) function is useful in reconciling these
differences. The COPYFILE command, for example, makes use of the get({path})
function to provide a platform-independent way of copying files. For more
information, see the MATRIXX online Help.

NOTE: This syntax cannot be nested.
278

7

MathScript Objects
This chapter outlines the procedure for writing and using your own MathScript
object (MSO). Before writing an MSO you should have a good understanding of
object-oriented concepts and Xmath objects in particular. Chapter 5, Data Objects
and Operators, introduces each intrinsic Xmath object and the operators that are
overloaded for that object. You should also be proficient in the MathScript
language (Chapter 3 and Chapter 6).

As described in Chapter 5, you can easily augment these intrinsic objects by
designing your own custom objects using MathScript.

7.1 MSO Overview

The MathScript object feature enables you to create custom high-level objects for
use in the Xmath environment. Object development in Xmath fundamentally
involves determining what data defines the instance of an object, writing the
initializer function and creating the various commands, functions, and operators
which can manipulate object instances. The complete definition of an object and
its behavior is encapsulated within an MSO file. The structure and contents of an
MSO file are described in greater depth in subsequent sections.

Careful thought should be used when developing objects, especially those which
will be shared among a number of people. The object author should design, test,
and document objects before allowing others to use them. Once an MSO is in use,
279

MATRIXX 7.0
Xmath User’s Guide
any changes to the definition of the class variables will create inconsistencies
between current and future instances that may be difficult to identify.

7.1.1 Object Instantiation

Once an object is defined by creating an MSO file, object instances can be created
from the Xmath command line or within any script using the following syntax:

instance = myobject(parameters);

This statement executes the object’s initializer function with the supplied input
parameter(s). The output of this expression is an object instance. An object
instance is recognized as an Xmath variable; this implies that it can be operated on
by Xmath commands such as SAVE, LOAD, and DELETE, copied with the
assignment operation, passed as a parameter to a function or command, and
returned as a function output.

The object instance is a container that stores the persistent class variables that
characterize a particular instance. The syntax for accessing a class variable is the
same as the syntax for addressing a variable in another partition. For example, if
an object named myobject contains a class variable named sigma, then that
variable can be accessed with the following statement:

instance.sigma

7.1.2 MSO File Format

MSO file format structure adheres to the rules in Sections 6.1.3 and 6.1.4 on p.226,
with one exception. The MSO file format accommodates multiple constructs in a
single file. This enables you to use a single file to define the object, overload or
create pertinent functions and commands, and overload operators to support the
new object. Example 7-1 illustrates the structure of an MSO file.

Example 7-1 Sample MSO File Format

#{
Block comment used as Help for this object.
}#

Object[x1,...] = mymso(in1,..., {kwds})
... MathScript statements

endObject
280

7

7
MathScript Objects
Operator z1 = +(<type>left,<type>right)
... MathScript statements

endOperator

Function[y1,...] = memFun(<type>a,..., {kwds})
... MathScript statements

endFunction

Command memCmd <type>input {kwds}
... MathScript statements

endCommand

■ If MATRIXX online Help is desired, supply a Help file or begin the file with
commented text that will serve as the Help text.

■ The body of the file consists of programming constructs. The first construct in
the file must be the initializer function for the object. The initializer function
contains the MathScript statements which are executed by Xmath whenever a
new instance of this object is created. The initializer function is explained in
greater detail in 7.2 Initializer Function, p.282.

■ Optional constructs to define or overload MathScript functions and
commands that act on your object can follow the initializer function in any
order, as discussed in detail in 7.4 Member Functions, p.289.

■ Optional constructs to overload operators can also appear anywhere after the
initializer function, as discussed in detail in 7.3 Operator Overloading, p.285.

7.1.3 Using MSOs in Xmath

The process for defining an MSO is identical to that for other MathScript entities
(see 6.1.7 Using User-Defined MSFs and MSCs, p.230). Just include the MSO files
you need in your Xmath path. Alternatively, you can define them explicitly with
the DEFINE command:

define mymso,{directory="/myHome/myobjects/my_mso"}

Xmath dynamically loads an MSO definition into memory only when it is
necessary.

NOTE: You provide online Help for MSOs the same way as for MSFs and MSCs;
see 6.1.6 Creating Online Help for User-Defined MSFs and MSCs, p.229 for more
details.
281

MATRIXX 7.0
Xmath User’s Guide
7.2 Initializer Function

The initializer function is a special function that is executed to create a new
instance of an object. It is the only required component in an MSO, and it must be
the first construct in the MSO file following the optional Help text. The syntax for
an initializer is the same as MathScript functions, except that the initializer is
declared between the statements Object and endObject. All other rules in Sections
6.1.3 and 6.1.4 on p.226 apply.

A simple initializer function is shown below.

Object[y]=mymso(a1,{b1})
... MathScript code

endObject

7.2.1 Class Variables

An object instance is characterized by persistent variables that are stored within
the object instance, similar to the way variables are stored within a partition. The
initializer is responsible for creating an instance and storing the class variables
within the instance. After object instances have been created, any other constructs
defined in the MSO file can access the class variables.

There are three types of class variables: required, optional, and computed.
Examine the following code fragment:

Object[y1]=mymso(a1,{b1})
... MathScript code

endObject

■ Required variables, such as a1 in the example above, must be specified by the
user when the object instance is created.

■ Optional variables, like b1, are optional input arguments to the initializer.

■ Computed variables, such as y1, are calculated by the initializer, typically as a
function of the input arguments.

Any number of required, optional, or computed class variables may be defined
for an object. The DEFAULT command is sometimes useful to give optional and
computed variables a default value.

When the initializer completes execution, a class variable that exists within the
function scope will be stored within the object instance. The MathScript
statements within the initializer can modify or delete any class variable. As a
282

7

7
MathScript Objects
result, required, optional, or computed arguments may or may not exist within an
object instance, depending on statements in the initializer.

Variables created in the body of the initializer that are not class variables are
considered temporary and are automatically deleted when the initializer
completes execution. If you want a variable to be persistent, specify it as a
computed variable.

When an object initializer is called, the result of that statement is always a single
instance of the new object. The defined outputs, such as y1 in the above initializer
function, are used to create a computed class variable (as opposed to the output of
an ordinary function).

The following is a sample initializer function for the new object mysys. Note that
this object does not have any computed variables. They are not required.

Object mysys(a,b,c,d, {dt})
... MathScript code

endObject

You would create an instance of mysys as follows:

inst= mysys(1,2,3,4);

After the input variables are created within the object and given their appropriate
values, the initializer is called in the scope of the inst object. The initializer checks
the arguments for correctness, sets any optional arguments that require a default
value, and then calculates the output arguments based on the inputs. When the
initializer is complete, all local variables are deleted from the object.

7.2.2 Nested Objects

Any class variable can be an instance of another object. As a result, you can create
quite complex nested object hierarchies. If a required or optional class variable is
an object, the user must create an instance of the nested object and supply it as an
input to the initializer. If a computed class variable is an object, the initializer itself
will create the instance of the nested object.

Let’s say you had the following nested object embedded within two other objects.

Object nested(z)
... MathScript code

endObject

Object supplied(<nested> x)
... MathScript code

endObject
283

MATRIXX 7.0
Xmath User’s Guide
Object [x] = computed(y)
x=nested(y)
delete y

endObject

To create an instance of the object supplied, the user would type the following:

a = nested(1);
b = supplied(a);

However, to create an instance of the object computed, the user only types the
following:

c = computed(1);

7.2.3 Type Declaration

Type declarations are qualifiers that can optionally precede each input argument
for functions, commands, and operators defined in an MSO. They create a
restriction that an argument must be an instance of a particular type of object.

The syntax of a type declaration is to specify the name of an MSO within a set of
angle brackets immediately before any input argument.

Object[x]= mymso(in1,<alien>in2)
... MathScript

endObject

In the initializer function shown above, the type declaration <alien> specifies that
any instance of an object of type alien will be accepted as the second argument.

Arguments that do not have a type declaration indicate that any object will be
accepted when this function, command, or operator is called.

The Xmath interpreter uses type declarations for two purposes:

■ Ensure that parameters passed to user-defined functions and commands are
the correct type. If a mismatch is encountered, Xmath will automatically
generate an error message.

■ Facilitate function, command, and operator overloading by limiting the use of
certain constructs to a specific combination of input arguments. The use of
type declarations to achieve overloading is described in detail in a later
section.
284

7

7
MathScript Objects
7.3 Operator Overloading

The ability to customize the behavior of operators in Xmath to manipulate MSOs
is called operator overloading. Operator definitions containing MathScript
statements that should be executed to achieve the desired behavior are placed
within an MSO file. The syntax of an operator definition is similar to that of a
function definition, with the exception that the operator behavior is declared
between the Operator and endOperator statements. For example, to define the
plus (+) operator to add two apple objects together, you would insert the
following construct in apple.mso.

Operator y = + (<apple>left, <apple>right)
... MathScript code

endOperator

Multiple operator definitions may be required for the same operator to
completely define all possible object combinations. For example, if you have an
apple.mso and an orange.mso, you would need the following three operator
definitions in addition to the one above to describe all possible combinations of
adding apples and oranges.

Operator y = + (<apple>left, <orange>right)
... MathScript code

endOperator

Operator y = + (<orange>left, <apple>right)
... MathScript code

endOperator

Operator y = + (<orange>left, <orange>right)
... MathScript code

endOperator

Operator definitions can be inserted in any of the MSO files that are declared as
arguments. So the two operators that combine apples and oranges can appear in
either the apple.mso or the orange.mso. However, because Xmath searches MSO
files from the left argument to the right argument, it is more efficient to put the
operator definition in the MSO file corresponding to the first argument.

Type declarations, like <apple>, tell the Xmath interpreter which operator
definition to choose from when performing operations that deal with objects. For
unary and binary operator definitions, at least one of the arguments must have a
type declaration for the MSO in which the operator definition resides.

Type declarations are not required on all arguments. If a type declaration is not
specified, Xmath will accept any variable for that argument. For example, the
285

MATRIXX 7.0
Xmath User’s Guide
following operator will add an apple object to any type of object including
intrinsic Xmath objects such as matrices, strings, etc.

Operator y = + (<apple>left, right)
... MathScript code

endOperator

The MathScript code within such an operator should check unqualified
arguments and restrict inputs to the object types that the MathScript code can
properly handle; an error should be returned if the conditions are not met.

Operators that can be overloaded are listed in Table 5-1, p.172.

Unary operators act on a single variable and their operator definitions will have
only one input argument. Binary operators act on two variables and their
definitions will have two input arguments. The - operator is both a unary and
binary operator and Xmath will automatically select the correct definition from an
MSO file based on the number of declared arguments.

Operator y = - (<apple> arg)
... MathScript code

endOperator

Operator y = - (<apple>left, <apple>right)
... MathScript code

endOperator

The comma and semicolon operators are special operators that can accept two or
more operands. For example the following operator definitions describe two
combinations of different types of objects manipulated by the comma operator.

Operator y = , (<obj1>one, <obj2>two)
... MathScript code

endOperator

Operator y = , (<obj1>one, <obj2>two, <obj3>three)
... MathScript code

endOperator

The comma operator definitions above would correspond to the following two
types of expressions, assuming a, b, and c are of the appropriate type:

case1 = [a,b];
case1 = [a,b,c];

The comma and semicolon operators can also be used in compound expressions.
In the following example, a and b would first be resolved using the appropriate
comma operator to produce an intermediate result, then, c and d would be
resolved with the appropriate comma operator to produce a second intermediate
286

7

7
MathScript Objects
result. Finally, the two intermediate results would be resolved with the
appropriate semicolon operator.

result = [a, b; c, d];

When the comma or semicolon operators act on an operand of heterogeneous
types, a separate operator definition is required for each specific combination of
operands, as was illustrated in the above examples. However, the variable
argument construct (:) can be used when all operands are of the same type (see
6.5.1 Variable Arguments, p.252). The variable argument construct also has the
advantage that a single operator definition can generically handle any number of
operands. The following definition of the comma operator illustrates the variable
argument syntax:

Operator y = , (<special>:)
n = argn();
for i = 1:n
 x = argv(i);
 y = ...
endfor

endOperator

The colon argument (:) instructs Xmath that any number of operands will be
accepted by this definition, all of which must be of type special. The argn()
function, which requires no inputs, will return the number of operands. The
argv(i) function accepts an integer between 1 and the number of operands and
will return a copy of the requested operand. Consequently the variable argument
operator definitions can be generically programmed with loops to handle any
number of homogeneous operands.

The insertion and extraction index operators are also special operators. The
insertion index operator enables indexing into an object instance on the left side of
the equal sign in an expression. In the following example, inst is an instance of an
MSO called myObj, and the following expression attempts to insert 10 into the
second element of the inst object.

inst = myObj(a);
inst(2) = 10;

The extraction index operator enables indexing into an object instance on the right
side of the equal sign in an expression. For example, the following expression
attempts to extract the value from the fifth element of the inst object.

ans = inst(5);

The definition of the insertion and extraction index operators would have the
following structure and would reside in the myobj.mso file.
287

MATRIXX 7.0
Xmath User’s Guide
Operator Object(i) = y
... Mathscript code

endOperator
Operator y = Object(i)
... Mathscript code
endOperator

The argument i would contain the element indices 2 and 5 from the above
examples at runtime. The argument y would contain the value to be inserted or
the result to be extracted to or from the object. The MathScript code within the
index operator should check and restrict the input arguments (i and y) to only
object types with values that the MathScript code can properly handle; an error
should be returned if the conditions are not met.

The word Object in the above declarations is a reserved token which instructs
Xmath that this is a special operator that will execute directly within the scope of
the object instance. In other words, the MathScript code within these operators
can directly access the class variables within the instance. For example, let’s say
the variable x is a class variable of myObj. The MathScript code within a binary
plus (+) operator would have to reference x with the statement left.x or right.x, but
the index operator can reference x directly with the statement x. Take care that the
declared arguments of the operator (y and i) do not overwrite the class variables
of the object.

The index operators can accept any number of operands, as long as an operator
definition with the appropriate number of arguments resides in the object’s MSO
file. To also handle two-dimensional indexing for the myObj example object, the
following two operators, each with two index arguments, i and j, would be
required.

Operator Object(i,j) = y
... Mathscript code
endOperator

Operator y = Object(i,j)
... Mathscript code

endOperator

The index operators also support the variable argument construct to handle any
number of operands generically. The following extraction index operator
illustrates the variable argument syntax for the index operator.

Operator y = Object(:)
n = argn();
for i = 1:n

x = argv(i);
y = ...

end
endOperator
288

7

7
MathScript Objects
7.4 Member Functions

Your MSO should include any functions or commands that use your object.

■ Member functions and commands behave like MSFs and MSCs with the
exceptions that they cannot be debugged individually unless they are
uniquely named.

Once your MSO is defined, MSO member entities can be called from the Xmath
command area, or other MathScript files.

■ You can overload existing commands and functions to operate on your object.
For example, the following function overloads the function max() to
accommodate the MSO type group.

function [out]=max(<group>a)
 out=max(a.data)
endfunction

When a function or command is overloaded, its behavior is limited to the
cases specified in the function header. For example, the overloaded version of
max will only be enabled if the input is a group object.

■ The file need not contain all the code for each new function or command.
Using LNXs for complex numerical operations will speed up execution
considerably.

■ You can identify member functions with the whatis command. For example:

whatis other

other is a member function (./other.mso)

■ Member function and command definitions do not include Help text; their
Help text should be included with the Help text for the MSO.

7.4.1 Sample MSO

The MSO shown in Example 7-2 defines an object named group. This MSO will
accept any single row matrix. This MSO overloads the min() and max() functions
to support this object. It also overloads binary and unary minus (-), *, +, and
binary and unary equality. You can find this example in $XMATH/examples/mso/
group.mso.
289

MATRIXX 7.0
Xmath User’s Guide
Example 7-2 group.mso

#{--
The group object is an unordered collection of unique whole numbers which can
be manipulated by operators that adhere to conventional set theory. We are
using the name "group" for this object so it does not conflict with the "set"
command in Xmath.

A new group is defined using the group initializer. For example:

 s1 = group([1,2,3,4]);
 s2 = group([3,4,5,6]);

Binary group operators are defined as follows:

 A + B = union of A and B
 A - B = difference, the elements of A
 which are not in B
 A * B = intersection of groups A and B

 Unary group operators are defined as follows:

 - A = inverse of all the elements of A
--}#

Object group(data)
 if(!check(data,{rows=1,!report}))
 error("Parameter 'data' must be a single row matrix","F")
 return
 endif

 data = sort(data); // check for duplicate elements
 [,n] = size(data);
 for i = 1:n-1
 if data(i) == data(i+1)
 error("Non-unique element","F",data);
 endif
 endfor
endObject

#--
Overload of max
#--
function [out]=max(<group> a)
 out=max(a.data)
endfunction

#--
Overload of min
#--
function [out]=min(<group> a)
 out=min(a.data)
endfunction

#--
Unary Minus
290

7

7
MathScript Objects
#--
Operator y = - (<group> a)
 y = group(-a.data);
endOperator

#--
Difference
#--
operator y = -(<group> a, <group> b)
 [,cols]=size(a.data)
 y = null;
 temp = null;
 for i = 1:cols
 loc = find(a.data(i) == b.data)
 if(loc == null)
 temp = [temp,a.data(i)];
 endif
 endfor
 if (temp <> null)
 y = group(temp);
 endif
endoperator

#--
Intersection
#--
operator y = * (<group> a, <group> b)
 [,cols]=size(a.data)
 y = null;
 temp = null;
 for i = 1:cols
 loc = find(a.data(i) == b.data)
 if(loc <> null)
 temp = [temp,a.data(i)];
 endif
 endfor
 if (temp <> null)
 y = group(temp);
 endif
endoperator

#--
Union
#--
operator y = + (<group> a, <group> b)
 c = b - a;
 y = group([a.data,c.data]);
endoperator

#--
Equality
#--
operator y = == (<group> a, <group> b)
 y = 0
 [,acols]=size(a.data)
 [,bcols]=size(b.data)
291

MATRIXX 7.0
Xmath User’s Guide
 if(acols <> bcols)
 return
 endif
 res = a.data==b.data
 if(check(res,{nonzero,!report}))
 y = 1
 endif
endoperator

#---
Index Operators
#---
Operator Object(i) = y
 [r,c]=size(y);
 if (r <> 1 & c <> 1)
 error("Invalid insertion data","F",y);
 endif
 data(i) = y;
endOperator

Operator [y] = Object(i)
 y = data(i);
endOperator

#---

7.4.2 Limitations

■ Member entities and operators cannot have their own online Help.

■ You cannot explicitly define or debug a member function, command, or
operator, only the object initializer. Consequently, if you alter the definition of
a member entity, you must UNDEFINE it before the new definition can be
used.

■ A MathScript object cannot be passed into an LNX, but the class variables
from a given instance can be passed into an LNX as other variables are.

■ You cannot assign or access a variable using an expression that contains more
than one dot. This implies that if an object instance contains another MSO as a
class variable, you cannot directly access the class variables of the nested
object. For example, the following syntax is not allowed:

x = obj1.obj2.var;

This limitation can be circumvented if you use a temporary variable:

temp = obj1.obj2;
x = temp.var
292

8

External Program Interface
This chapter describes the three Xmath interfaces for user programs written in C,
C++, or FORTRAN:

■ The User-Callable Interface (UCI) mechanism allows a user program to call
Xmath as a server.

■ The LNX (LiNked eXecutable) mechanism allows a subroutine in a user
program to be callable by Xmath as if it were a regular MathScript function.

■ Any C or C++ program can call the functions XmathSave() and XmathLoad()
to save and load Xmath data files.

8.1 Overview

A user program using the LNX or UCI mechanism is termed an LNX or UCI
program, or simply an LNX or UCI. Table 8-1 summarizes the differences between
an LNX and a UCI.

Table 8-1 LNX and UCI Comparison

Feature Comparison

Purpose A UCI starts Xmath; an LNX is started by Xmath.

Data Structure Both use the same data structure, the externType.
293

MATRIXX 7.0
Xmath User’s Guide
Xmath also provides two functions, XmathSave() and XmathLoad(), which allow
an external program to save and load Xmath data.

The Xmath directory $XMATH/src contains code examples for the LNX and UCI
utilities, as well as a sample makefile. $XMATH/include has include files for LNX
and UCI scripts.

8.1.1 LNX

The LNX utility allows you to invoke C, C++, or FORTRAN subroutines from
within Xmath. Once an LNX is built, it can be used in the same manner as any
MathScript function. Furthermore, an LNX can be invoked in background mode
so that it can run in parallel with Xmath.

Sample LNX Program

An LNX written in C program has the layout shown in Figure 8-1. Each LNX
program contains one LNX function. The LNX function performs a specified
calculation and has the following format:

void LNXfunc(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
externType **lhs, **rhs;
{
 ...
}

Functions UCI: Must use XmathStart() and XmathStop(); must not use
XmathMain().

LNX: Must use XmathMain(); must not use XmathStart() or
XmathStop().

Build Both must include a C header file called xmathlib.h and link with a
library called libXmath.a (for UNIX) and xmath.lib (for Windows).

Running UCI: Start Xmath with -call (a switch that triggers the UCI), the
program that is calling Xmath, and any other desired startup
options..

LNX: An LNX can be called just like any other MathScript function.

Table 8-1 LNX and UCI Comparison (Continued)
294

8

8
External Program Interface
The input arguments reside in an array of externType pointers to which the
variable rhs (right-hand side) points. The integer nrhs (number of right-hand side
arguments) defines how many externType pointers are in the array.

An LNX function writes its outputs to lhs, which is an array of nlhs pointers
allocated by Xmath. For example, if nlhs=3 (indicating that your LNX was called

Figure 8-1 Typical C Language LNX Program Format

#include "xmathlib.h"

void LNXfunc(nlhs,lhs,nrhs,rhs)
int nlhs, nrhs;
externType **lhs, **rhs;

{
/* test for errors in input data */

if (condition){ /*input data errors*/
XmathError(ERROR_FATAL, "error msg",1);
return;
}

/* code */
}

static functionData fdata[]={

{"myLNX",LNXfunc,

1,3,1,3,

"myLNX takes the first input ..."},

{0}

};

main(argc,argv)
int argc;
char** argv;
{

 ...
XmathMain(argc,argv,fdata,0);

 ...
return 0;

}

externType is a data structure defined in
xmathlib.h. The variables nlhs and nrhs specify
the number of left-hand side and right-hand side
arguments (inputs and outputs). Each element in
the lhs array holds an output variable pointer;
each element in the rhs array holds an input
variable pointer.

Required header file

Main program must call XmathMain

Table of function data

Main program

Argument number in error

Residency flag (0 or 1)

Minimum # of inputs,

minimum # of outputs,

Severity is defined in xmathlib.h

Help text

Return 0 is mandatory

maximum # of inputs,

maximum # of outputs

Error message

LNX function pointer
the name of the LNX
(currently unused)
295

MATRIXX 7.0
Xmath User’s Guide
with three outputs), you might allocate a matrix for the first input, a PDM for the
second, and a string for the third:

8.1.2 UCI Programs

The User Callable Interface (UCI) lets an external C program invoke Xmath as a
child process, send and receive data to and from Xmath as shown in Figure 8-2,
and execute MathScript statements. A UCI has the layout shown in Figure 8-3.

matrix PDM string

lhs[0] lhs[1] lhs[2]lhs

Figure 8-2 Calling Xmath from an External Program (UCI)

Figure 8-3 Typical C Language UCI Program Format

MathScript Value externType

Xmath Process LNX Process

Inputs

Outputs

#include "xmathlib.h"

main(argc,argv)
int argc;
char** argv;
{
 ...

XmathStart(""); /* Starts Xmath */
 /* Calls to XmathGet, XmathPut,

XmathExecute, etc....*/
XmathStop(""); /* Stops Xmath */
return 0;

}

Required header file

Main program
296

8

8
External Program Interface
8.1.3 Compatibility

If an existing LNX or UCI compiled for an older version of MATRIXX is intended
to be run in a new version of MATRIXX, we recommend that you rebuild the LNX
or UCI using the new version of MATRIXX to maintain currency with the new
compiler, DLLs, and OS supported by the new version of MATRIXX.

Sometimes the IPC protocol in the Xmath LNX or UCI library changes due to bug
fixes and enhancements. An existing LNX or UCI must be rebuilt using the new
version of the MATRIXX LNX or UCI library (libXmath.a/xmath.lib). If you
attempt to run a previous version of an LNX or UCI, Xmath displays the
following message:

Process failed to load (incompatible ipc version).

8.2 externType Data Types

The file $XMATH/include/xmathlib.h contains the data structures for externType
data types and related function declarations. This file must be included in all LNX
and UCI programs and programs that call XmathSave() (see p.311) and
XmathLoad() (see p.312).

An externType is an external version of an Xmath data value such as matrix,
string, and PDM. These are detailed in the following subsections.

If you allocate memory for the externType data type with an Allocate*() function,
you need to remember to deallocate the memory with the corresponding
Delete*() function, especially before re-using the variable. The function tables in
this section provide the names of these functions for each data type.

8.2.1 Matrix Data Type

The externType et_matrix corresponds to a MathScript scalar matrix value.

typedef struct {
 externType et;
 int rows, columns, isReal;
 double *real, *imag;
} et_matrix;
297

MATRIXX 7.0
Xmath User’s Guide
The Boolean member isReal indicates whether the matrix is complex (isReal = 0)
or real (isReal = 1).

Table 8-2 lists the functions provided in the LNX functions used to allocate a new
matrix, convert arrays to the matrix structure, and delete existing matrices.

8.2.2 String Data Type

The externType et_string corresponds to the MathScript string value.

typedef struct {
 externType et;
 int len, rows, columns;
 char *buf;
 char **array;
} et_string;

■ array is an array of char* with dimensions defined by rows and columns.

■ buf points to the string in the first row, first column of array. The integer len
defines the length of this string. len does not have any significance for any of
the other strings in array.

For a summary of the et_string type functions, see Table 8-3.

Table 8-2 et_matrix Functions

Function Description and Prototype

AllocateMatrix() Allocates a matrix:

et_matrix* AllocateMatrix(int rows,int columns,int
isReal);

WrapMatrix() Converts single or double arrays into a real or complex
matrix.

et_matrix* WrapMatrix(int rows,int columns double*
real,double* imag);

Both input arrays must be previously allocated and of type
double. If the matrix is real, use the NULL pointer 0 as the
imag argument.

This function does not copy the input data; therefore, do not
delete the original arrays after calling WrapMatrix().

DeleteMatrix() Deallocates storage associated with the et_matrix input
argument.

void DeleteMatrix, (et_matrix* the_matrix)
298

8

8
External Program Interface
8.2.3 PDM Data Type

The PDM data structure et_pdm is defined as shown below:

typedef struct {
externType et;
et_matrix *iv;
et_string *name;
et_string *columnNames;
et_string *rowNames;
et_matrix *theData;
int rows, columns;

} et_pdm;

The meaning of each member is described in the following PDM:

testpdm=pdm([1:3; 4:6; 7:9; 10:12],101:1:104,{rowNames = "leaves",
columnNames =["birch", "elm", "oak"], domainName = "time"}):

Table 8-3 et_string Type Functions

Function Description and Prototype

AllocateStringMatrix() Creates an et_string structure that can hold strings up to
length len.

et_string* AllocateStringMatrix(int rows,int
columns,int len))

The length of the string does not include the termination
character.

WrapString() Converts a previously defined string to the et_string data
type:

et_string* WrapString(char *buffer);

WrapStringMatrix() Converts a previously allocated array of strings to a string
matrix object (LNX string data type).

et_string* WrapStringMatrix(int rows,int
columns,char** buffer))

Wrapping functions WrapStringMatrix() and
WrapString() do not perform any copying of strings;
therefore, do not delete the original input strings after calling
a wrap function.

DeleteString() Deallocates storage associated with the structure et_string.

void DeleteString, (et_string* the_string)
299

MATRIXX 7.0
Xmath User’s Guide
Figure 8-4 shows the PDM testpdm and the et_pdm struct mapped to its parts.

Figure 8-5 shows how the information from testpdm is assigned to the fields of the
et_pdm structure. Use AllocateMatrix() and AllocateStringMatrix() to build the
PDM components, and WrapPDM() to form the PDM. For a summary of these
functions, see Table 8-4.

Figure 8-4 Mapping the et_pdm Structure to a PDM

typedef struct {
externType et;
et_matrix *iv;
et_string *name;
et_string *columnNames;
et_string *rowNames;
et_matrix *theData;
int rows, columns;

} et_pdm;

testpdm (a pdm) =

time | birch elm oak
-----+------------------------
 101 | leaves 1 2 3
-----+------------------------
 102 | leaves 4 5 6
-----+------------------------
 103 | leaves 7 8 9
-----+------------------------
 104 | leaves 10 11 12
-----+------------------------
300

8

8
External Program Interface
Figure 8-5 et_pdm Data Structure

et_pdm→et=etpdm

et_pdm→rows=1

et_pdm→columnNames rows=1
columns=3
len=5 (length of birch)

array=["birch","elm","oak"]

(et_string struct)

et_pdm→iv
real=101,102,103,104
rows=1
columns=4

et_pdm→theData
(et_matrix struct)

rows=4
columns=3
isReal=1
real=1:12
imag=NULL

(et_matrix struct)

et_pdm→rowNames
(et_string struct)

array= leaves
rows=1
columns=3
len=5

et_pdm→columns=3

et_pdm→name
(et_string struct) len=4

array= time
301

MATRIXX 7.0
Xmath User’s Guide
8.2.4 List Data Type

The externType et_list corresponds to a MathScript list object.

typedef struct {
externType et;
int nElem; /* The number of elements in the list */
externType** item; /* an array of pointers to the list elements */

} et_list;

For a summary of et_list functions, see Table 8-5.

Table 8-4 et_pdm Functions

Function Description and Prototype

WrapPDM() et_pdm* WrapPDM(et_matrix *iv,
et_matrix *theData,
int rows,
int columns,
et_string *name,
et_string* columnNames,
et_string* rowNames)

Inputs must be previously defined using AllocateMatrix()
and AllocateStringMatrix(). Like the other wrapping
functions, no copying is done, so don’t delete the input after
the call.

DeletePDM() Deallocates storage associated with the et_pdm input
argument.

void DeletePDM(et_pdm* the_pdm)

Table 8-5 et_list Functions

Function Description and Prototype

AllocateList() Allocates a list:

et_list* AllocateList(int N)

DeleteList() Deallocates storage.

void DeleteList(et_list* N)
302

8

8
External Program Interface
8.2.5 Null Data Type

The NULL data type corresponds to the Xmath NULL value ([])

.

8.3 LNX and UCI Functions

The functions available for use in LNX and UCI programs (described in 8.4, p.316)
are described in the following sections. A summary of these functions appears in
Table 8-7.

Table 8-6 et_null Functions

Function Description and Prototype

AllocateNull() Allocates a null:

et_null* AllocateNull()

DeleteNull() Deallocates storage.

void DeleteNull(et_null* N)

DeleteAny() (Generic deallocation) Deallocates any externType you
allocate.

void DeleteAny(externType*)

Table 8-7 LNX Functions

Function Description
See
Page

XmathMain()
(for LNX only)

Sets up the communication facility and transmits
information about the LNX back to Xmath; it then
transfers control to your LNX function. Upon
completion, the results are transmitted back to
Xmath.

304

XmathCommand() Executes Xmath commands and provides access to
command and error output.

306

XmathDisplay() Displays a message to the Xmath log window. 307
303

MATRIXX 7.0
Xmath User’s Guide
8.3.1 XmathMain() (for LNX only)

XmathMain() sets up the communication facility and transmits information about
the LNX back to Xmath; it then transfers control to your LNX function. Upon
completion of the LNX function, the results are transmitted back to Xmath. For an
example, see Figure 8-1, p.295.

int XmathMain(int argc, char **argv, functionData* fData, int flag);

XmathError() Allows you to report errors and make log entries.
Severity levels are described in the file $XMATH/
include/xmathlib.h. The argument in error will be
highlighted in the Command Window command
area.

307

XmathExecute() Executes Xmath commands. Xmath windows (except
for the commands window and the debugger) are
created as needed. XmathExecute() returns 0 if
successful and an error string otherwise.

308

XmathGet() Retrieves the value of a variable from Xmath.
XmathGet() returns 0 if successful and an error
string otherwise.

308

XmathLoad()
(for any C or C++
program)

Creates externType values from an Xmath data file. 311

XmathPut() Copies the contents of a data structure to the Xmath
environment.

308

XmathSave()
(for any C or C++
program)

Saves externType values to an Xmath data file. 311

XmathStart()
(for UCI only)

Starts Xmath. option is a char* that is reserved for
future Xmath invocation options. The option must be
an empty string ("") for this version.

314

XmathStop()
(for UCI only)

Terminates the Xmath process immediately.
Modified variables will not be saved.

314

Table 8-7 LNX Functions (Continued)

Function Description
See
Page
304

8

8
External Program Interface
The flag argument to XmathMain specifies whether the process remains resident.
If this argument has the value LNX_RESIDENT, the process is resident. It remains
in memory across invocation until Xmath is exited or the LNX is undefined by
issuing the UNDEFINE command in Xmath. If the flag argument to XmathMain()
is 0, the process is nonresident. It is terminated after each invocation and a new
process started.

If an LNX function is called often, then it is advisable to make the process
resident. If the user function allocates a large amount of memory and is called
infrequently, then it is more memory efficient to make the LNX nonresident.

The functionData data structure is typically used as follows:

static functionData fdata[] ={
 {"userFun",userFun,minIn, maxIn,minOut,maxOut,help},

{0}
}

Figure 8-1, p.295 shows functionData in relation to the rest of an LNX.

■ fdata is the name of an array that holds the function data. Although it is an
array, Xmath currently uses only the first element.

■ "userFun" is the name of this LNX; the lowercase version of this name must
match the filename of the executable LNX program.

■ userFun is the pointer to the function itself.

■ minIn, maxIn are the minimum and maximum number of input arguments,
respectively. For example, if userFun must be called with no less than two,
and no more than four inputs, minIn is 2, and maxIn is 4.

■ minOut, maxOut are the minimum and maximum number of output
arguments, respectively.

Every time userFun is called, Xmath automatically verifies that the number of
input and output arguments is in the valid range.

■ The optional Help text entry is a char* pointer; 0 can be used if there is no
Help. The Help text can span multiple lines (as shown in Example 8-1). For an
additional example on formatting Help, see $XMATH/src/fasthilb.c.

■ The mandatory array terminator {0} comes last.

NOTE: You can provide a Help file for your LNX just as you can for MSFs, MSCs,
and MSOs in the same directory as your LNX. If Xmath finds no Help file, it uses
the optional Help text within the LNX itself. See 6.1.6, p.229 for details.
305

MATRIXX 7.0
Xmath User’s Guide
Example 8-1 Sample Help Text

/* Define the online Help */

#define Help "\
Description: Produces an n x n matrix\n\
with each element multiplied by -1.\n\
\n\
Syntax: C = negate(A)\n\
\n\
Inputs: A is a matrix or PDM.\n\
\n\
Outputs: C is a matrix or PDM.\n\
\n\
Examples: a = 1:10; negate(a)?\n\
\n\"

8.3.2 XmathCommand()

XmathCommand() is an enhanced version of XmathExecute() providing access to
command and error output. The syntax is as follows:

char **XmathCommand(char *command,int options);

The return value of XmathCommand() is a static array of two pointers of type
char*. The first pointer points to command output, or 0 if none or not requested.
The second pointer points to an error message caused by the command, or 0 if
none or not requested. This can be illustrated as follows:

The options parameter is a bit mask defined with the following macros:

Both of these macros are used in the following example:

command error

out[0] out[1]char**out

output message

XMCMD_OUT Returns command output.

XMCMD_ERR Returns command errors.
306

8

8
External Program Interface
char *xmcmd = "foo(bar)?";
char **out = XmathCommand(xmcmd,XMCMD_OUT|XMCMD_ERR);
if (out[0]) {

printf("The output of \"%s\" is %s\n",xmcmd,out[0]);
free(out[0]);

}

else
printf("\"%s\" has no output\n",xmcmd);

if (out[1]) {
printf("\"%s\" resulted in the error: %s\n",xmcmd,out[1]);
free(out[1]);

}
else

printf("\"%s\" has no errors\n",xmcmd);

8.3.3 XmathDisplay()

XmathDisplay() displays a message to the Xmath Log window. The syntax is as
follows:

void XmathDisplay(char *message);

An example of using this function follows:

XmathDisplay("Have a nice day.");

This output appears in the Xmath Log window.

8.3.4 XmathError()

XmathError() allows you to report fatal and warning errors as well as log entries.
The syntax is as follows:

void XmathError(errorType error, char* message, int argNum)

Severity levels are described in the file $XMATH/include/xmathlib.h. You can
specify ERROR_FATAL, ERROR_WARNING or ERROR_LOG. You must also
specify the input argument number that is in error (a scalar between 1 and the
number of right-hand side arguments), or specify 0 to indicate the function itself.
The argument in error will be highlighted in the Command Window command area.

NOTE: The error message string returned by XmathCommand() is memory
allocated with the C library function malloc(). To free this string, use the C library
function free().
307

MATRIXX 7.0
Xmath User’s Guide
The following code fragment uses XmathError() to check whether the first input is
a matrix.

if (*rhs[0]!= ETMATRIX) {
XmathError(ERROR_FATAL, "Input must be a matrix!", 1);
return;

}

This code fragment checks if the matrix is real:

x=(et_matrix*)rhs[0]
if (!x->isReal) {

XmathError(ERROR_WARNING, "Matrix is not real!", 1);
}

In the above example, we cast the first input into x, an et_matrix pointer, then
check to see if it is real.

8.3.5 XmathExecute()

XmathExecute() executes Xmath commands. Xmath windows (except for the
commands window and the debugger) will be opened as needed. XmathExecute()
returns 0 if successful and an error string otherwise.

char *XmathExecute(char *cmd)

For example, this call opens the Graphics window:

XmathExecute("plot(random(2,3))?");

This call opens the Help window:

XmathExecute("help bode;");

For an example of how to use XmathExecute(), see Example 8-2.

8.3.6 XmathGet() and XmathPut()

XmathGet() and XmathPut() retrieve and modify Xmath variable values.

NOTE: The command string must end with a question mark (?) or semicolon (;).

NOTE: The error message string returned by XmathExecute() is memory allocated
with the C library function malloc(). To free this string, use the C library function
free().
308

8

8
External Program Interface
XmathGet()

XmathGet() retrieves the value of an Xmath variable. It sets the second argument
to externType*. XmathGet() returns 0 if successful and an error string otherwise.
The syntax is as follows:

char *XmathGet(char* name, externType** data)

For example:

er_string = XmathGet("data", (externType**)&data);
if (er_string != NULL)
 printf("ERROR: %s", er_string);
switch(*data) {
case ETMATRIX:
 M = (et_matrix*)data;
 break;

case ETSTRING:
 S=(et_string*)data;
 break;

case ETPDM:
 P=(et_pdm*)data;
 break;
}

Notice how the externType pointer is dereferenced to determine the actual data
type.

XmathGet() allocates storage for Xmath variables. If you re-use the variable, be
sure to deallocate the storage prior to an XmathGet call. For an example of how to
use XmathGet(), see Example 8-2.

XmathPut()

XmathPut() creates or modifies an Xmath variable with a given data value. The
first argument (name) must be a valid Xmath variable name. The second argument
(data) is a pointer to one of the external types described in the externType Data
Types section on p.297. XmathPut() returns 0 if successful and an error string
otherwise. The syntax is as follows:

char *XmathPut(char *name, externType* data)

NOTE: The error message string (er_string) returned by XmathGet() is memory
allocated with the C library function malloc(). To free this string, use the C library
function free().
309

MATRIXX 7.0
Xmath User’s Guide
 For example:

/* allocate a real-valued Matrix struct */
x = AllocateMatrix(n, 1, 1);

/* fill up some local data */
ptx = x->real;
pty = y->real;

for (i = 0; i < n; i++) {
 *ptx = (double)i;
 *pty++ = sin(*ptx);
 *pty++ = cos(*ptx++);
}

/* send local x over to Xmath as variable x */
er_string = XmathPut("x", x);

if (er_string != NULL) {
 printf("ERROR: %s", er_string);
 free(er_string);
 }

For an example of how to use XmathPut(), see Example 8-2.

8.3.7 Example Using XmathGet(), XmathPut(), and XmathExecute()

Example 8-2 combines the use of the last three functions discussed.

Example 8-2 Using XmathGet(), XmathPut(), and XmathExecute()

n = 10;
y = AllocateMatrix(n, 2, 1);
/* fill up some local data */
pty = y->real;
for (i = 0; i < n; i++)
 *pty = (double)i;

/* copy data over to Xmath*/
er_string = XmathPut("y", y);
if (er_string != NULL) {
 printf("ERROR: %s", er_string);
 free(er_string);
 }

/* execute the function */
er_string = XmathExecute("y = log(abs(y));");

NOTE: The error message string (er_string) returned by XmathPut() is memory
allocated with the C library function malloc(). To free this string, use the C library
function free().
310

8

8
External Program Interface
if (er_string != NULL) {
 printf("ERROR: %s", er_string);
 free(er_string);
 }

/* Free up existing memory associated with y
 before executing XmathGet() */
DeleteMatrix(y);
er_string = XmathGet("y", (externType**)&y);
if (er_string != NULL) {
 printf("ERROR: %s", er_string);
 free(er_string);
 }

8.3.8 XmathSave() and XmathLoad()

XmathSave() and XmathLoad() make it possible for a C or C++ program to save
and load files in Xmath format without starting Xmath. Both functions make use
of the externVar data structure:

typedef struct {
 char *name;
 externType *value;
} externVar;

The variable name points to the full name of the Xmath variable, which consists of
the partition name and the variable name (for example, main.var). value is the
standard LNX data structure pointer.

XmathSave() and XmathLoad() both work with an array of pointers to externVars,
one for each Xmath variable. The name field of the last element of such an array
must be a NULL pointer.

XmathSave()

XmathSave() has the following prototype:

char *XmathSave (char *filename, externVar *data, int type)

where

filename is the name of the file to be saved

data is an array of externVar defined above

type parameter is an integer that lets you select ASCII (value 0) or binary
format (value 1)
311

MATRIXX 7.0
Xmath User’s Guide
XmathSave returns a NULL pointer for success. If this function fails, it returns a
string that describes the error.

XmathLoad()

XmathLoad has the following prototype:

char *XmathLoad (char *filename, externVar **data)

where

filename is the name of the file to load

data is an array of externVar defined above

XmathLoad() loads the specified file and constructs an array of externVars, one for
each variable loaded, and stores the address of the array into data.

XmathLoad() returns the NULL pointer for success. If this function fails, it returns
a string that describes the error.

Standard Library Linkage

XmathSave() and XmathLoad() are declared in the LNX header file and defined in
the LNX library. Therefore, a C or C++ program that calls XmathSave() and
XmathLoad() should be built and invoked as an LNX or UCI.

For an alternative method of library linkage on UNIX only, see 8.6.2, p.335.

Example of XmathSave and XmathLoad

The following example illustrates how to use XmathSave() and XmathLoad().

Example 8-3 XmathSave() and XmathLoad()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xmathlib.h"

#define N 10
#define NAME "main.m1"
#define FILE_NAME "call5.xmd"
312

8

8
External Program Interface
int main(void)
{
 int k;
 char name[] = NAME;
 char * status;
 et_matrix * matrix1;
 externVar * my_data, * my_data_1;

 /*== Allocate mem. for 2 data struct. type "externVar" ==*/
 my_data = (externVar *)malloc (sizeof(externVar)*2);
 /*== Backup the pointer ==*/
 my_data_1 = my_data;

 /*==
 MUST set field "name" of LAST (#2) structure to NULL
 ==*/
 (my_data + 1)->name = NULL;

 /*== Allocate mem. for field "name" of struct. "my_data" ==*/
 my_data->name = (char *)malloc (sizeof(char) * (strlen(name)+1));

 /*== Copy str. NAME to field "name" of struct. "my_data" ==*/
 strcpy (my_data->name, name);

 /*== Allocate mem. for "et_matrix" data struct. ==*/
 matrix1 = AllocateMatrix(N, 1, 0);

 /*== Fill in some data ==*/
 for (k = 0; k < N; k++) {
 (matrix1->real)[k] = k;
 (matrix1->imag)[k] = k+1;
 }

 /*== Fill in field "value" after cast to "externType" ==*/
 my_data->value = (externType *)matrix1;

 /*== Save matrix1 (Xmath format) in file = FILE_NAME ==*/
 if (status = XmathSave(FILE_NAME, my_data)) {
 printf ("status = %s\n", status);
 return 1;
 }

 /*== Free each field of every struct. type "externVar"
 Do it in for loop until field "name" = NULL ==*/

 for (my_data = my_data_1; my_data->name; my_data++) {
 free (my_data->name);
 /*== Free mem. from AllocateMatrix() above ==*/
 DeleteAny(my_data->value);
 }

 /*== Free array of "externVar" ==*/
 free (my_data_1);

 return 0;
 }
313

MATRIXX 7.0
Xmath User’s Guide
8.3.9 XmathStart() and XmathStop()

The file $XMATH/include/xmathlib.h defines the XmathStart() and XmathStop(),
which allow your program to communicate with Xmath. Each routine description
below is followed by a prototype.

XmathStart()

XmathStart() starts Xmath. option is a char* that is reserved for future use.
Currently, the option must be an empty string (""). This function returns the
Xmath process ID (pid) if successful and 0 if unsuccessful.

int XmathStart(char *option)

XmathStop()

XmathStop() terminates the Xmath process immediately. Modified variables will
not be saved. This function returns 0 if successful and 1 if unsuccessful.

int XmathStop()

8.3.10 Sample LNX Demonstrating Most Functions (myfun)

myfun() has one input and one output. The syntax to invoke myfun() is the same
as for any other MathScript function:

y = myfun(x)

Example 8-4 provides sample code for most of the external program interface
functions.

Example 8-4 myfun.c

#include "xmathlib.h"
void myfun(int nlhs, externType **lhs, int nrhs,externType **rhs)
{
et_matrix *x,*y;

/* This function is written to indicate how you would use your */
/* own C code to perform operations on Xmath data objects, and is*/
/* thus quite general. In this example, we manipulate the real */

NOTE: On UNIX systems, the filename for an LNX must be in lowercase letters.
314

8

8
External Program Interface
/* and imaginary components of the data separately. Note that */
/* these elements are DOUBLES. The next line defines storage */
/* variables for the real and imaginary components of the */
/* output data matrix. */

double *val, *ival;
int i; /* a counter variable */

/* Do some error checking. */

if (*rhs[0] != ETMATRIX) {
 XmathError(ERROR_FATAL,"Input must be a matrix!",1);
 return;
 }
x=(et_matrix*)rhs[0];
if (x->columns !=1) {
 XmathError(ERROR_FATAL,"Can only work on column vectors!",1);
 return;
 }
if (x->isReal) {
 XmathError(ERROR_WARNING,"Need complex input!",1);
 x->imag=(double*)calloc(x->rows,sizeof(double));
 x->isReal =0;
 }

/* Pre-allocate the output y as a matrix having the same size */
/* as input x. */

y=AllocateMatrix(x->rows, 1, x->isReal);

/* The following five lines assign the real and imaginary data */
/* to the variables val and ival respectively. Then 2 is added */
/* to each of the real components and 3 to each of the imaginary */
/* components. Instead of using the dummy example here, you */
/* replace these lines with a call to a more sophisticated */
/* function of your own. */

val = y->real; ival = y->imag;
for (i = 0; i < x->rows; i++) {
 val[i] = 2.0+x->real[i];
 ival[i] = 3.0+x->imag[i];
 }

/* Return y as the first--and in this case, only--output of */
/* the left side of the function call. */

lhs[0]=(externType*)y;
}
static char help[]={"This is the Help text.\n No Help yet."};
static functionData fdata[]={
 {"myfun",myfun,1,1,1,1,help},
 {0,0,0,0,0,0}
 };

main(argc,argv)
int argc;
315

MATRIXX 7.0
Xmath User’s Guide
char** argv;
{
 XmathMain(argc,argv,fdata,0);
 /* This must always return 0. */
 return 0;
}

8.4 Building and Calling LNX and UCI

In this section, we use the sample LNX file myfun.c (Example 8-4) to illustrate
how to build an LNX. A UCI is built exactly the same as an LNX.

8.4.1 Building on a UNIX System

To build a makefile and call an LNX on a UNIX system:

1. Copy the sample program myfun.c from $XMATH/src to your working
directory as follows:

copyfile "$XMATH/src/myfun.c"

2. $XMATH/src/Makefile is the makefile used to build an LNX or UCI. Copy the
makefile template to your working directory:

copyfile "$XMATH/src/Makefile"

3. Edit the template to put myfun.c on the NAME line and myfun.o on the
USEROBJECTS line. In addition, specify the appropriate compiler command
(for example, acc) on the LINK line and appropriate compiler libraries (for
example, $(CLIBS)) on the LIBS line.

4. Enter the make command from the Xmath command area:

oscmd("make")

or

oscmd("make NAME=myfun USEROBJECTS=myfun.o
LIBS='-L$(XMATH)/lib -lXmath' LINK=acc")

NOTE: You can skip this step and use the expanded form of the make command
below.
316

8

8
External Program Interface
5. Once the make has run successfully, you can call myfun() as a regular Xmath
function:

myfun(1 + jay)

8.4.2 Sample makefile (UNIX)

Example 8-5 provides a sample makefile for an LNX or UCI. This example
includes several lines that are user-editable, such as the NAME and DEFS lines.
Comments in the example explain the required user inputs. In this sample,
myfun.c is the name of the sample LNX. The required user-input fields appear in
bold type, but these are normally blank and require your modification.

Example 8-5 Sample makefile for Solaris Platform

Basic MAKEFILE for creating callable interface/lnx executable

Following fields must be set (Makefile or command line)

NAME Prefix name of program that uses the callable
interface or of the lnx file you wish to create
USEROBJECTS List of .o files you wish to link with

LIBS Name of compiler-specific libraries (suggested
Solaris SC4.0 libraries pre-defined in CLIBS, CCLIBS,
and FLIBS
LINK Name of compiler or link editor

Following fields are user-settable

USERLIBS List of library search paths and/or libraries
(e.g. library, -Lpath, and/or -llibname)
DEFS C or C++ pre-processor define directive
(e.g. -DXTFUNCPROTO)
UCFLAG User CFLAGS, i.e. options the user wants sent to
C compiler (e.g. -g)
UCCFLAG User CCFLAGS, i.e. options the user wants sent to
C++ compiler (e.g. -g)
UFFLAG User FFLAGS, i.e. options the user wants sent to
FORTRAN 77 compiler (e.g. -g)
ULDFLAG User LDFLAGS, i.e. options the user wants sent to
linker (e.g. -v)
INCLUDE List of directories that are searched for
#include files
CC Name of C compiler
CCC Name of C++ compiler
FC Name of FORTRAN compiler

NOTE: Use the simple form only if you edited the makefile.
317

MATRIXX 7.0
Xmath User’s Guide
 NAME = myfun
 USEROBJECTS = myfun.o
 USERLIBS =
 DEFS = -DSOLARIS
 UCFLAG =
 UCCFLAG =
 UFFLAG =
 ULDFLAG =

 INCLUDE = -I. -I$(XMATH)/include

 CLIBS = -L$(XMATH)/lib -lXmath
 CCLIBS = -L$(XMATH)/lib -lXmath_cxx
F77 and M77 are Solaris Fortran SC2.0 runtime libraries
FLIBS = -L$(XMATH)/lib -lXmath_cxx -lF77 -lM77
F77, M77, and sunmath are Solaris Fortran SC3.0 and SC4.0 runtime
libraries
 FLIBS = -L$(XMATH)/lib -lXmath_cxx -lF77 -lM77 -lsunmath
 LIBS = $(CLIBS)

 CC = acc
 CCC = CC
 FC = f77 -temp=$(HOME)
 LINK = $(CC)

 CFLAGS = $(DEFS) $(UCFLAG) $(INCLUDE)
 CCFLAGS = $(DEFS) $(UCCFLAG) $(INCLUDE)
 FFLAGS = $(UFFLAG) $(INCLUDE)
 LDFLAGS = $(ULDFLAG)

.SUFFIXES : .o .c .cxx .C .f .F

.c.o:
 $(CC) $(CFLAGS) -c $< -o $@
.cxx.o:
 $(CCC) $(CCFLAGS) -c $< -o $@
.C.o:
 $(CCC) $(CCFLAGS) -c $< -o $@
.f.o:
 $(FC) $(FFLAGS) -c $< -o $@
.F.o:
 $(FC) $(FFLAGS) -c $< -o $@

$(NAME): $(USEROBJECTS)
 $(LINK) $(LDFLAGS) -o $@.lnx $(USEROBJECTS) $(USERLIBS) $(LIBS)
$@echo " Done."
318

8

8
External Program Interface
8.4.3 Building on a Windows System

To build a makefile and call an LNX on a Windows system in Xmath:

1. Copy the sample program myfun.c from %XMATH%\src to your working
directory as follows:

copyfile "%XMATH%\src\myfun.c"

2. Enter the following command from the Xmath command area:

oscmd("makelnx myfun.c")

In general, to build LNXs and UCIs for Xmath use on a Windows system, enter
the makelnx command with the following syntax:

> makelnx -debug "file1 file2 ..."

For the above command, the default is to build “nodebug” objects unless you
specify the -debug option.

The above command is a batch file that calls the makefile. Here is the path to the
batch file and makefile:

%XMATH%\bin\makelnx.bat
%XMATH%\bin\makelnx.mk

Typically, you will not need to edit or change these files to perform routine build
tasks. If you do need to customize your build procedures, you can copy these files
to your local project directory and edit them as required.

If you do not specify a source module filename or list of filenames in the
command area, the script by default will look in your local directory for a specific
argument file containing the list of filenames. These default argument files require
a filename extension of .arg and must have a name that matches the name of the
corresponding build command. For example, makelnx.arg is used by makelnx.bat.
In these argument files you include a list of your files to compile and link.

The filenames can be separated by spaces or placed on separate lines and any text
on a line following ‘\ ’ (backslash space) will be treated as comment text.

All target filenames specified with the above “make” commands must have a
suitable file extension because this determines the choice of compiler for each file.
The default file extensions currently supported include:

NOTE: Filenames can be separated by spaces or placed on separate lines with a
continuation character ‘\’ appended at the end of the previous one.
319

MATRIXX 7.0
Xmath User’s Guide

Like most standard make facilities, the above “make” commands support
conditional compilation and linking of files depending on file creation time and
whether the necessary dependent files currently exist. This means that recompiles
will only be done for files where source is newer than the corresponding object
file. If you need to force recompilation of a source module, delete the
corresponding object file.

The make commands automatically create a log in your current working
directory. The log filename has an extension of .log (for example, makexxx.log).
Upon completion of the make, a copy of this file remains in your local directory in
case you need to review the contents of the make.

If you need to customize your builds, each of the make script source files
described above contains a commented section highlighting several predefined
macro strings that you can modify as needed to customize the build process.
Follow the instructions provided in the files.

8.4.4 Undefining an LNX

If an existing resident LNX file is relinked while Xmath is running, use the
undefine command to terminate the current LNX process so that the new LNX is
used upon the next invocation.

8.4.5 Using the User-Callable Interface

The User Callable Interface (UCI) program uses the function XmathStart() to
invoke Xmath. Any inputs that will be used in Xmath are copied from the user
program to Xmath objects using XmathPut(). Once all inputs are copied over to
the Xmath process, any Xmath statement can be executed using XmathExecute()
or XmathCommand(). Any data transferred to Xmath and altered can be retrieved
using XmathGet() or saved to a file using XmathSave(). The Xmath process is
terminated using XmathStopv().

C .c

C++ .cxx or .cpp or .cc

FORTRAN .for or .f
320

8

8
External Program Interface
8.4.6 Building and Calling a UCI

A UCI is created in the same way as an LNX. A UCI is invoked by specifying the
-call option to the command to start Xmath:

xmath -call myuci.ext

xmath -tty -call myuci.ext

where ext = lnx on UNIX machines and exe on PCs.

Any required arguments to myuci can be supplied at the end of the command line.

8.4.7 LNX Example

Example 8-6 provides an example of the LNX function negate(). The negate()
function works exactly like the minus (-) operator on matrix and PDM inputs. The
function returns an error if the input is a string.

Example 8-6 negate()

#include "xmathlib.h"
void negate(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
/* lhs is a pointer to the return arguments */
/* rhs is a pointer to the input arguments */
externType **lhs, **rhs;
{
 int number_elem, i;
 et_matrix *input;
 et_pdm *in_pdm;
 double *in_data;
 switch(*rhs[0]) {
 case ETMATRIX: {
 input = (et_matrix *)rhs[0];
 in_data = input->real;
 number_elem = input->rows * input->columns;
 for(i=0; i < number_elem;i++, in_data++)
 *in_data = -(*in_data);
 lhs[0] = (externType*)input;
 break;
 }
 case ETPDM:{
 in_pdm = (et_pdm *)rhs[0];
 in_data = in_pdm->theData->real;
 number_ele =in_pdm->theData->rows*in_pdm->theData->columns;
 for(i=0; i < number_elem; i++, in_data++)
 *in_data = -(*in_data);
 lhs[0] = (externType*)in_pdm;
 break;
321

MATRIXX 7.0
Xmath User’s Guide
 }
 default:
 XmathError(ERROR_FATAL,
 "Data Type not supported in this function", 1);
 }
}

/* Define the online Help */

#define Help "No Help yet"

/* Holds the function information: */

static functionData fdata[] = {
 {"negate", negate, 1, 1, 1, 1, help},
 {0}
};

main(argc, argv)
int argc;
char **argv;
{
 int resident = 0;
 XmathMain(argc, argv, fdata, resident);

return 0;
}

8.4.8 UCI Examples

Example 8-7 is a UCI program that uses the Xmath log() function to calculate the
logarithm of an input. This file is found in $XMATH/src/call.c. Example 8-8 is a
UCI example that uses Xmath graphics in an external C program.

Example 8-7 Xmath as a Computational Engine

#include <math.h>
#include <stdio.h>
#include "xmathlib.h"
int doMyProgram()
{
et_matrix *x, *y;
double *ptx, *pty;
int n, i;
n = 10;

/* allocate two matrix structs */

x = AllocateMatrix(n, 1, 1);
y = AllocateMatrix(n, 2, 1);

/* fill up some local data */

322

8

8
External Program Interface
ptx = x->real;
pty = y->real;
for (i = 0; i < n; i++) {

*ptx = (double)i;
*pty++ = sin(*ptx);
*pty++ = cos(*ptx++);
}

/* send local x and y over to Xmath as variable y.
 Check for errors*/

er_string = XmathPut("y", y);
if (er_string != NULL)
 printf("ERROR: %s", er_string);

/* execute an Xmath function */

er_string = XmathExecute("y = log(abs(y));");
if (er_string != NULL)

printf("ERROR: %s", er_string);

/* Get y back. have to delete the current y since we
* get a new one from XmathGet.*/

DeleteMatrix(y);
er_string = XmathGet("y", (externType**)&y);
if (er_string != NULL)
 printf("ERROR: %s", er_string);

/* Output the new y */

pty = y->real;
for (i = 0; i < n; i++)

fprintf(stdout, "%g %g\n", *pty++, *pty++);
}
int main(argc, argv)
unsigned argc;
char** argv;
{
XmathStart("");
doMyProgram();
XmathStop();
return 0;
}

Example 8-8 Xmath as a Graphics Engine

#include "xmathlib.h"
#include <stdio.h>

/* Generate some test data */
double data[8] = {0.0, 1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0};
int number_points = 8;

int DisplayVector(vector, columns)
323

MATRIXX 7.0
Xmath User’s Guide
double *vector;
int columns;

{
 et_matrix *thedata;
 int real = 1;
 char *er_string;

/* Convert the data array to the data type et_matrix, so
 Xmath will recognize it*/

 thedata = WrapMatrix(1, columns, vector, 0);

/* Copy the data over to the Xmath child process */

er_string = XmathPut("thedata", (externType*)thedata);
if (er_string != NULL)

printf("ERROR: %s", er_string);

er_string = XmathExecute("plot(thedata)?");
if (er_string != NULL)

printf("ERROR: %s", er_string);

/* The plot is now drawn, and the user can interact with
 the window, adding text, changing colors, etc*/

XmathExecute("pause");
}
int main(argc, argv)
 unsigned argc;
 char** argv;
{
/* Start the Xmath process */

XmathStart("");

/* Send data to be plotted */
DisplayVector(data, number_points);5

/* Stop the Xmath child process */
XmathStop();
return 0;

}

Any plot can be saved to a PostScript or HPGL file using the hardcopy command:

XmathExecute("hardcopy file=\"mygraph\", {ps}");

The C escape character \ (backslash) is necessary for the embedded Xmath string.

8.4.9 Calling an LNX in Background Mode

If an LNX performs a long calculation, you can invoke the LNX in background
mode so that you can continue to use Xmath for other tasks while the LNX runs.
324

8

8
External Program Interface
Another scenario where a background LNX is useful is where the LNX is a GUI
application (see Advanced Background LNX Function (IPCWC) on p.335) for
information on how to communicate with a background LNX).

Example

To invoke the LNX myfun() in background mode, issue the following command:

[output] = (define myfun, {background})(1000);

The return value, output, will be “busy” during the background LNX’s execution.
In this example, 1000 is the input argument to myfun().

Given the above example, typing the command WHO (which lists variables) in
the Xmath window shows that output is busy:

who

output -- busy (job #13103)

After the background define command for the LNX process has been entered, the
process will be spawned to run in background mode and the user will have
immediate control of the Xmath command area.

Upon completion of the background LNX process, notification of the process
termination status appears in the Xmath log area, after you press Return.

[out]=(define myfun, {background}) (1000);
(job 13103) has terminated normally.

Example 8-9 is an example of an LNX program that can run in either foreground
or background mode.

Compile this sample LNX program using the steps described in 8.4.1, p.316. To
see how to run the sample program in background mode, refer to Advanced
Background LNX Function (IPCWC) on p.335.

Example 8-9 getpi (Runs in Foreground or Background)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "xmathlib.h"

/* This sample lnx program calculates the value of pi based on the */
/* number of randomly-generated (x,y) points that fall within the */
/* upper right quarter of the unit circle. */
/* */
325

MATRIXX 7.0
Xmath User’s Guide
/* Test using an input value between 500000 and MAXRANDOM. */

#define REAL1
#define MAXRANDOM((double) (exp(31 * log(2.0))-1)) /* (2**31) - 1 */

void getpi(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
externType **lhs, **rhs;
{
 externType *data;
 et_matrix *arg;
 et_matrix *out;
 long steps;
 double x, y, r;
 double p_i;
 char buffer[255], *errstr;
 int count; /* Number of random points inside unit circle */

 if (nrhs != 1) {
 /* User did not provide an integer argument. Go to Xmath's */
 /* main partition and get the variable `step_number'. */
 errstr = XmathGet("main.step_number", &data);
 if (errstr != NULL) {
 sprintf(buffer, "Error getting main.step_number : %s",
 errstr);
 XmathError(ERROR_FATAL, buffer, 1);
 free(errstr);
 return;
 }

 if (*data != ETMATRIX) {
 XmathError(ERROR_FATAL, "Usage: getpi number", 1);
 return;
 }
 arg = (et_matrix*) data;
 XmathExecute("main.pi = 0;"); /*create the result variable*/
 } else {
 /* User provided an integer argument to the lnx */
 if (*rhs[0] != ETMATRIX) {
 XmathError(ERROR_FATAL, "This LNX requires a number!", 1);
 return;
 }
 arg = (et_matrix*) rhs[0];
}

 srandom((int) time(0)); /* Start random number generator */

 count = 0;
 for (steps = 0; steps < (int) arg->real[0]; steps++) {
 /* Get x and y coordinate values between 0 and 1 */
 x = random() / MAXRANDOM;
 y = random() / MAXRANDOM;
 r = sqrt((x * x) + (y * y));
 if (r <= 1.0)
 count++;
 }
326

8

8
External Program Interface
 p_i = 4.0 * count / steps;
 fprintf(stderr, "%ld steps: p_i = %f\n", steps, p_i);

 out = AllocateMatrix(1, 1, REAL);
 nlhs = 1;
 out->real[0] = p_i;
 lhs[0] = (externType*) out;

 if (nrhs != 1) {
 XmathPut("main.pi", (externType*) out);
 DeleteAny(data);
 }
}

functionData fdata[] =
{{"getpi", getpi, 0, 1, 0, 1, "Help text for getpi" }, {0} };

main(argc, argv)
int argc;
char **argv;
{
 fprintf(stderr, "Starting ...\n");
 XmathMain(argc, argv, fdata, 0);
 fprintf(stderr, "Stopping ...\n");
 return 0;
}

8.4.10 Removing an LNX Job

When an LNX is invoked in background mode, Xmath echoes a job number
(which is really its process ID) to the log area. This job number can be used as
input to the REMOVE JOB command.

REMOVE JOB job_number

The REMOVE JOB command uses the specified job number to terminate the LNX.

8.4.11 Building an LNX to Link a FORTRAN Routine

Xmath provides two ways to create an LNX function based on FORTRAN code.
The preferred approach is to use C as described in the previous sections and then
transfer control to your FORTRAN subroutine from within C. The second method
is to use the special FORTRAN interface to LNX described in this section. This
approach is less complete due to limitations in FORTRAN, and it is recommended
only for users who don’t know C.
327

MATRIXX 7.0
Xmath User’s Guide
Calling FORTRAN from C LNX Files

There are three important points to remember when calling a FORTRAN routine
from C: name linkage, argument linkage, and array ordering.

1. (UNIX Only) In C, append an underscore (_) to the end of the name of the
FORTRAN routine you need to call. You will need to define the FORTRAN
function as a void external function within your C routine. (Some
architectures do not support underscores.)

2. FORTRAN expects subroutine arguments to be passed by reference (address).
Here is a sample FORTRAN subroutine:

subroutine fort(n, a)
double precision a(n)
integer n

To call the above subroutine from C, you need:

double *a;
int n;
fort_(&n, a)

Here you pass the address of n. Note that the variable a is already an address.

3. FORTRAN stores two-dimensional arrays in column-major, as opposed to
row-major, mode. This means that sequential elements of a FORTRAN array
that comprise the columns and sequential elements of a C array run along the
rows of the array.

Creating FORTRAN LNX Files

The C interface to LNX described above is the preferred method of presenting
external FORTRAN code as an Xmath function. However, for users who may not
be familiar with the C language, a FORTRAN interface that does not require any
C programming is also provided.

To get started using FORTRAN LNX you may want to study the file template.f in
$XMATH/src. This file is an example of how to link a FORTRAN matrix-vector
multiply routine into Xmath. You must supply an initialized common block
named fdata declared as:

character *10 name
integer minIn, maxIn, minOut, maxOut
common /fdata/ minIn, maxIn, minOut, maxOut, name
328

8

8
External Program Interface
The template does this by using a block data section where it initializes the
common block with data statements. These parameters have the same meaning as
the fields of the functionData structure in 8.3.1, p.304. Currently the name is
ignored, and the name of the LNX function will be the name of the generated
LNX executable file.

You must also supply a subroutine named ftnlnx with the calling sequence. The
template ($XMATH/src/template.f) gives an example of a ftnlnx subroutine.

 subroutine ftnlnx(thefun,
! nin, stkin, locin, cmxin, rowin, colin,
! nout, stkout, locout, cmxout, rowout, colout,
! howmuch, error)
 integer thefun
 integer nin,locin(nin),cmxin(nin),rowin(nin),colin(nin)
 integer nout,locout(nout),cmxout(nout),rowout(nout),colout(nout)
 integer howmuch, error
 double precision stkin(*), stkout(howmuch)

The meanings of the parameters are described in Table 8-8.

Table 8-8 ftnlnx Parameters

Parameter Function

thefun: For future expansion. Set to 1 in this version.

nin The number of input arguments.

stkin A “stack” of the input matrices.

locin An array indicating the index in stkin of each input matrix.

For example, input argument 2 starts at position locin(2), so the (1,1)
element of input argument 2 is stkin(locin(2)), and the (2,1) element is
stkin(locin(2)+1).

cmxin cmxin(i) is 1 if input argument i is complex. Zero otherwise.

rowin rowin(i) gives the number of rows of input argument i.

colin colin(i) gives the number of columns of input argument i.

nout The number of output arguments requested by the Xmath user.

stkout, locout, cmxout, rowout, and colout are analogous to stkin, locin, cmxin,
rowin, and colin, except that they pertain to the output arguments. You are responsible
for setting these values completely and correctly.
329

MATRIXX 7.0
Xmath User’s Guide
The typical sequence in ftnlnx will be to:

1. Unpack the input stack (stkin).

2. Pass control to your desired FORTRAN subroutine.

3. Pack the output arguments in stkout (and set locout, cmxout, rowout, and
colout).

The routines discussed in previous sections (XmathError, AllocateMatrix, etc.) are
not available in FORTRAN LNX.

8.5 Debugging

Debugging procedures for LNXs and UCIs involve setting breakpoints and then
analyzing errant behavior versus expected behavior as described in the following
sections.

8.5.1 Debugging an LNX with dbx (on UNIX Systems)

1. Create an LNX called myfun.lnx with debug information.

You can modify the make command itself (see Step 4, p.316) by adding the
debug option (for example, UCFLAG = -g) or by changing the appropriate
user-defined flag within the makefile itself (for example, UCFLAG = -g or
UCCFLAG = -g) (see Sample makefile for Solaris Platform on p.317).

2. You must indicate that you want the debugger to ignore the USR1
interprocess signal handler.

howmuch Indicates how much space is reserved in stkout. That is, you should regard
stkout as an array declared as double precision stkout(howmuch).

error a user-settable error flag.

if error > 0 - fatal error
if error < 0 - warning
if error == 0 - no error

Table 8-8 ftnlnx Parameters (Continued)

Parameter Function
330

8

8
External Program Interface
● For dbx under SunOS, create a file called .dbxinit with this line:

ignore USR1

● On HP-UX, create a file called .xdbrc with this line:

z 16sr

3. Issue the Xmath DEBUG command:

debug myfun

4. Now call the function:

myfun(1+jay)

Xmath displays the debug LNX dialog window and then pauses. The debug
message dialog will have a message similar to,

dbx ./myfun.lnx 8134

where dbx is followed by the LNX function and the process ID.

5. To start the dbx process with the LNX process attached, type or copy the
above command into a UNIX shell.

6. In dbx, set a breakpoint in myfun() with the command:

stop in myfun

7. Issue the dbx continue command by typing cont in the debugger.

8. Return to Xmath and dismiss the debug LNX dialog.

Immediately, dbx breaks at the breakpoint previously set. You can start
debugging the function.

9. When you finish debugging the function, issue the dbx CONT command.

Xmath returns with the output of the LNX function.

10. When the debug session is complete, use the dbx DETACH command to
detach the LNX process from dbx.

For resident functions, Xmath automatically turns off debug mode for LNXname
after it returns. If you want to debug the LNX function with another set of inputs,
call LNXname again. This time, however, Xmath will not display the debug
dialog. On the other hand, if you haven’t removed the breakpoint in dbx, the LNX
process will break at the same breakpoint. The function can then be debugged
with the new inputs.
331

MATRIXX 7.0
Xmath User’s Guide
Specifying an LNX to be nonresident means that the LNX is automatically
undefined after it finishes. Therefore, the debugging mode is forgotten. This
makes MSF and LNX debug mode behavior consistent, because undefining an
MSF also makes Xmath forget everything about the MSF, including the debug
mode.

8.5.2 Debugging LNXs (on Windows systems)

To debug an LNX, use the following procedure:

1. Create an LNX called myfun.exe with debug information as described in
Building on a Windows System on p.319:

makelnx (-debug) myfun.c

This creates an LNX called myfun.exe.

2. Go to Xmath Commands window and call the LNX:

debug myfun

myfun(1+jay)

3. A dialog box (myfun.exe-Application Error) appears with the message:

A breakpoint has been reached. Click Cancel to go into the debugger.

Then another dialog appears with the message:

Break caused by hard coded breakpoint instruction.

Click OK in this dialog.

4. Now, select Debug→Breakpoints.

A Breakpoints dialog appears.

5. In the Location area, enter myfun. Click Add to add the name to the
breakpoints column. Click OK to dismiss the dialog.

6. Select Debug→Go from the Debug pull-down menu.

The debugger will now stop at the breakpoints you have specified.

7. When you are finished debugging, select Debug→Breakpoints. When the
Breakpoints dialog appears, click Clear All to clear the breakpoints. Click OK to
dismiss the dialog box. Select Debug→Go.

The LNX will run to completion.
332

8

8
External Program Interface
8. To exit the debugger window, select File→Exit.

8.5.3 Debugging UCIs (on UNIX systems)

To debug a UCI on a UNIX system, perform the following procedure:

1. Create a UCI with debug information as described in Building on a UNIX
System on p.316.

2. Debug the UCI using dbx:

xmath -call dbx uci.lnx

3. Now, set a breakpoint in myfun.c with the command:

stop in myfun

For each function you want to debug.

4. Enter run.

The debugger will now stop at the breakpoints you have specified.

5. When you are finished debugging, clear the breakpoints and type cont to let
the UCI run to completion.

6. To exit the debugger, type quit.

8.5.4 Debugging UCIs (on Windows systems)

To debug a UCI on a Windows system, perform the following procedure:

1. Create a UCI with debug information as described in Building on a Windows
System on p.319.

2. Debug the UCI using MSVC:

xmath -call msdev uci.exe

3. Now, select Debug→Breakpoints.

A Breakpoints dialog appears.

NOTE: Do not exit the debugger until the LNX runs to a completion.

NOTE: Do not exit the debugger until the UCI runs to a completion.
333

MATRIXX 7.0
Xmath User’s Guide
4. In the Location area, enter the name of the function you want to debug. Click
Add to add the name to the breakpoints column. Keep doing this for all of the
desired breakpoints. Click OK when you have finished.

5. Select Debug→Go.

The debugger will now stop at the breakpoints you have specified.

6. When you are finished debugging, select Debug→Breakpoints. When the
Breakpoints dialog appears, click on Clear All to clear the breakpoints. Click
OK to dismiss the dialog. Select Debug→Go from the Debug pull-down menu
to let the UCI run to completion.

7. To exit the debugger, select File→Exit.

8.6 Advanced Topics

8.6.1 Handling an Aborted LNX

The following MathScript command

set debugonerror off

allows a script to resume execution after an LNX that it calls terminates
abnormally. Without using this command, a script will be aborted if the LNX that
it calls terminates abnormally.

For example:

command callsegv
 set debugonerr off # allow this script to resume if segv() aborted
 out = [] # assuming segv() never returns a []
 out = segv() # an LNX that terminates abnormally
 if out == [] # if segv() aborted,
 display "segv() failed."
 else
 display "segv() returned successfully."
 endif
endcommand

NOTE: Do not exit the debugger until the UCI runs to a completion.
334

8

8
External Program Interface
If an LNX process terminates abnormally, Xmath prints out a message similar to
the following:

Process name has terminated abnormally (Signal #)

The signal number is the UNIX error code. These codes are standard on UNIX
systems and are described in the file /usr/include/sys/signal.h.

void XmathPanic()

8.6.2 Advanced Features and Notes

On UNIX systems only:

■ When an XmathSave() or XmathLoad() link is called, an Xmath process called
xmathsl is invoked. To avoid this overhead, you can link with the libxmsl.a
library in addition to libXmath.a (libXmath.a must follow libxmsl.a in the link
command). You will need the standard C++ library supported for your
platform for the link, typically by including -lC in the link command line.

That is, the standalone saveload document references the last line of this file:

$(CC) -o $@.lnx $(USEROBJECTS) -L$(LIBS) $(USERLIBS) -lXmath

which must be changed to the following:

$(CC) -o $@.lnx $(USEROBJECTS) -L$(LIBS) $(USERLIBS) -lxmsl
-lXmath -lC

■ LNX and UCI use the signal USR1 as part of communications processes; do
not modify this signal’s handler.

8.6.3 Advanced Background LNX Function (IPCWC)

IPCWC allows you to communicate with a background LNX process that is also a
windows client. First, a message is sent to the LNX with the specified window ID
(wid) and the process ID (pid). Additional data (the arguments listed) is then sent
to the LNX (formatted according to the specifiers in the format string, as
applicable). The calling syntax is:

NOTE: XmathPanic should be in your LNX or UCI program’s Ctrl-C signal handler
to clean up after an abnormal stop. The syntax is as follows:
335

MATRIXX 7.0
Xmath User’s Guide
IPCWC wid, pid, format_string, arg_list ...

■ The format specifiers are codes consisting of the percent sign (%) and a
character. They are:

%c A single character.
%d A decimal number.
%s A string.

■ All non-format specifiers are sent as individual characters.

■ The LNX process receives data with the calls shown in Table 8-9.
XmathIPCgets returns a malloc'ed string. Remember to free it when done.

■ $XMATH/include/xmathlib.h contains the definition for optional flags, such as
LNX_USE_IPC. In a background call, XmathReleaseIPC() detaches an LNX.
The last argument in the XmathMain() call sets the LNX_USE_IPC flag. The
callback LNX function, defined in the functionData structure, is responsible
for calling XmathReleaseIPC().

wid Window ID (a number).

pid Process ID (a number).

format_string A string with format specifiers (as described below).

arg_list The values to be sent. You can have as many values as you
like, as long as they are separated by commas and each
one maps to a format specifier in format_string.

Table 8-9 Background LNX Functions

Function Description and Prototype

XmathIPCgetc() XmathIPCgetc() returns a character from the IPC stream to
the LNX process.

char XmathIPCgetc()

XmathIPCgeti() XmathIPCgeti() returns an integer from the IPC stream to
the LNX process.

int XmathIPCgeti()

XmathIPCgets() XmathIPCgets() returns a malloc string from the IPC stream
to the LNX process. Remember to free the string when you are
done.

char *XmathIPCgets()
336

8

8
External Program Interface
Sample IPCWC Calling Sequence

The following sample IPCWC calling sequence sends the character H followed by
the number 104 to an LNX that has window ID 9999 and process ID 99:

ipcwc 9999, 99, "H%d", 104

The next step is to send the character B followed by character A, the string "Test1",
and then the ID number 5 to an LNX that has window ID 9999 and process ID 99.

ipcwc 9999, 99, "B%c%s%d", "A", "Test1", 5

ipcwc 9999, 99, "B%c%s%d&s", "A", "Test1", 5, status

Example 8-10 shows a pseudocode LNX example that uses some of the
XmathIPCget call. Example 8-11 is pseudo-code for a sample LNX program using
IPCWC.

Example 8-10 Sample Usage of ipcwc to Communicate with a Background LNX

#
action = SaveFile or LoadFile
#
Command SendAction action, file_name

wid = 9999;
pid = 99;

if (!is(action, {string}))
 error("Argument 'action' must be a string", "F")
endif

if (!is(file_name, {string}))
 error("Argument 'file_name' must be a string", "F")
endif

ipcwc wid, pid, "%c %s", stringex(action, 1, 1), file_name

endCommand

Example 8-11 Pseudo-Code for an LNX that Responds to ipcwc

#ifdef UNIX

NOTE: To ensure proper handshaking between the client and server in
sophisticated LNXs, the client program should wait for a status from the client;
when the client has finished reading it should return the status via
XmathIPCputs(). For example:
337

MATRIXX 7.0
Xmath User’s Guide
#include <X11/Xlib.h>

/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message(Window wid)
{
 XEvent xclient;
 extern Display *dpy;
 xclient.xclient.message_type = 0;
 xclient.xclient.type = ClientMessage;
 strcpy(xclient.xclient.data.b, "XMATH");
 xclient.xclient.format = 8;
 XSendEvent(dpy, wid, 0, NoEventMask, &xclient);
 XFlush(dpy);
}

/* This is how to detect a window message sent by the ipcwc command */
/* The following is a typical X event loop */
...
XEvent event;
switch (event.type) {
case ClientMessage:
if (Is_ipcwc_window_message(&event)) {
 action = XmathIPCgetc()
 switch (action) {
 case 'S':
 savefile = XmathIPCgets()
...
 case 'L':
 loadfile = XmathIPCgets()
 ...
 default:
 ...
 }
}
else {
 /* other ClientMessage messages */
}

int Is_ipcwc_window_message(XEvent *event)
{
extern Display *dpy;
XClientMessageEvent *xclient;
Atom wmpAtom, wmdAtom;
xclient = (XClientMessageEvent *) event;
wmpAtom = XInternAtom(dpy, "WM_PROTOCOLS", True);
wmdAtom = XInternAtom(dpy, "WM_DELETE_WINDOW", True);
return ((wmpAtom == None || wmdAtom == None ||
xclient->message_type != wmpAtom ||
xclient->data.l[0] != wmdAtom)
&& !strcmp("XMATH", xclient->data.b));
}

#else

#include <windows.h>
338

8

8
External Program Interface
/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message(HWND hwnd)
{
 PostMessage(hwnd, WM_USER, 0, 0);
}

/* This is how to detect a window message sent by the ipcwc command */
/* The following is a typical Windows event loop */
 ...
 switch (message) {
 case WM_USER:
 /* ipcwc Window message detected */
 }
#endif
339

MATRIXX 7.0
Xmath User’s Guide
340

9

Graphical User Interface
This chapter introduces Xmath’s fully programmable graphical user interface
(PGUI or GUI).

The GUI is available on all MATRIXX platforms. The GUI allows arbitrary
windows to be created and manipulated using only Xmath source code
(MathScript). GUI windows might contain, for example, sliders, pushbuttons,
menus, and plot areas, all of which can accept user input from the mouse. Xmath
simultaneously supports user interaction in any number of newly created GUI
windows, as well as through each of its standard windows.

The GUI provides a number of predefined dialogs that can be used to interact
with the user. These dialogs are a collection of modal dialogs that are used by
most applications. When called they suspend command execution until the user
responds to the dialog. Once the user responds, the response is returned and
command execution resumes.

9.1 Finding Out About the GUI

Whether you are a GUI tool user or a developer, you will want to learn about the
GUI, although the ultimate learning will be at different levels.
341

MATRIXX 7.0
Xmath User’s Guide
9.1.1 GUI Tool Users

GUI tools are simple and intuitive to use, but there are a few basic things you
should know. You should run guidemo and look at some of the examples,
especially leadlag, to get a feel for the features and capabilities of GUI tools. Each
GUI tool has extensive Help menus describing its use. Browsing through Help
messages is a good way to learn what a tool does.

9.1.2 GUI Developers

You might also want to develop your own GUI tools. For example, you might add
a graphical user interface to an existing Xmath command script. Programming
with the GUI is more difficult than writing your own Xmath commands and
functions, so delay trying this until you are quite comfortable programming in
Xmath and using GUI tools.

To develop your own simple tools using the GUI, we recommend that you run the
GUI demos while looking at the corresponding source code, which is in $XMATH/
demos/gui. The next step is to read the Help entries for the GUI functions in the
MATRIXX online Help. Each function has an example, consisting of an Xmath
command that creates a PGUI tool. Start with uiToolCreate(). For this and other
examples where an Xmath command is defined:

■ Use a text editor to create a new Xmath command file.

■ Copy the example command script into the file.

■ Name the file commandname.msc and save it to a folder included in the lookup
path.

■ Execute the command by typing its name in the Xmath command area.

For example, to run the uiToolCreate() example, copy the entire ex_uiTool
command to a file named ex_uiTool.msc. Save that file to a folder in your lookup
path. In the Xmath command area, type ex_uiTool and press Enter.

9.1.3 Running the GUI Demos

To see a menu of Programmable GUI examples, type guidemo in the Xmath
command area. This displays the menu shown in Figure 9-1.
342

9

9
Graphical User Interface
Figure 9-1 lists a number of GUI demos. You can run several demos at once.

To run a demo:

1. Select a demo (for example, Variable Binding).

2. Click OK.

In a few seconds the demo appears. (Your window manager may require you
to position the window(s) generated by the demo.)

Each demo has a Help menu in its menu bar (near the upper right side of the
window). The Help messages explain how to interact with the demo and
what it does. It may be helpful to read the rest of this chapter before (or while)
you try the demos.

3. To exit a demo, select Special→Exit or File→Exit from the individual demo
window.

To see another example of a GUI implementation, type ifilter in the commands
window command area.

Figure 9-1 Programmable GUI Examples
343

MATRIXX 7.0
Xmath User’s Guide
9.2 Interacting with a GUI Application

This section describes the mechanics of interacting with GUI windows. First, we
create an example dialog and then we discuss the various kinds of GUI objects
that you can place in a dialog or window and how to use them.

9.2.1 Creating an Example Dialog

Tools that use the GUI create windows that contain control elements such as
pushbuttons, sliders, pulldown menus, plots, and lists. Some of these elements
are shown in Figure 9-2, the PGUI Example dialog.

If you are a user only, you might want to just create the dialog without paying
much attention to the individual commands that follow. If you are a developer,
this is another example from which you can learn.

To create the dialog in Figure 9-2, type the following in the Xmath command area:

tl = uiToolCreate("guiexhelp");
mw = uiWindow(tl,{title="PGUI Example"});
tb = uiTable(mw,{height = 200, columns = 2});
void = uiButton(tb,{ text = "Do It"});
void = uiButton(tb,{ type = "toggle", text = "Toggle Button"});
void = uiLabel(tb,{ text = "v value"});
void = uiSlider(tb, {varname = "main.v", min = 0, max = 10});
void = uiVarEdit(tb, {varname = "main.w", text = "w value" });
void = uiShow(mw);
main.v = 5;
main.w = 12;

To kill the dialog in Figure 9-2 type:

uiDestroy("guiexhelp")

Figure 9-2 PGUI Example Dialog
344

9

9
Graphical User Interface
9.2.2 Controlling GUI Objects

You can control most functions with the left mouse button. For example, you can
activate a button by placing the mouse pointer anywhere on the button and
clicking the left mouse button. The PGUI Example dialog has two buttons: Do It
and 12.

Other objects behave as follows:

■ A toggle button (square shaped) is either on or off. Its indicator is filled in
when it is on. It can be toggled by pointing and clicking the left mouse button.
The toggle button shown in Figure 9-2 is off. Activating a toggle button
causes some action to be performed.

■ Radio buttons (diamond shaped) are a group of buttons with “radio” behavior.
Like the station selection buttons on a radio, selecting one button
automatically turns off any other button that is on.

■ A pulldown menu is displayed by depressing and holding the left mouse
button. As the mouse is dragged, the various menu selections (usually
pushbuttons) are highlighted. Releasing the mouse activates the selected
button.

A cascade menu is indicated by a small arrow to the right of the text in the
button. The cascade menu is displayed by moving the mouse to the right.

■ A text entry area behaves like the command input area in Xmath. Input is
terminated by a newline character. Before you can type into a text entry area,
you must focus on the area by placing the mouse pointer in the area and
clicking the left mouse button. Focus is indicated by a border highlight.

■ A list is a vertical list of items (strings) that can be selected (highlighted).
Depending on the application, a list can be configured to allow various types
of selection:

● A single-selection list allows only a single line to be selected. Clicking the
left mouse button selects a line.

● A multiple-selection list allows multiple lines to be selected. The selection
of a single line is toggled by clicking with the left mouse button.

● An extended-selection list also allows multiple lines to be selected. A
contiguous range of items can be selected by pressing the left mouse
button, dragging the mouse, and releasing. Depressing Shift and the left
mouse button selects all the items from the current item to the previous
item that was selected with the left mouse button. Depressing Control and
the left mouse button augments (rather than replaces) the existing
345

MATRIXX 7.0
Xmath User’s Guide
selections. This allows discontiguous ranges of items to be selected. This
type of list is used in the history sorting and history column dialogs in the
leadlag demo.

Once you select one or more items from a list, you then choose some action
such as Delete or Display.

■ A dialog is a small window that can contain a message and one or more
buttons. For example, a dialog might have a single button and a message
giving a warning or indicating an error.

Usually a dialog is modal—that is, you cannot interact with any other GUI or
Xmath window until the dialog has been closed. If you find you can’t interact
with Xmath or other GUI windows, then look for a modal dialog that might
have been accidently covered by another window.

■ Help messages are often listed under a Help pulldown menu at the top-right of
the GUI window. The Help message appears in a new window that provides
scroll bars as needed. The scroll bars are operated with the left and middle
mouse buttons. The window is dismissed by selecting the Close button.

■ A variable edit box appears in a GUI window as a button that displays some
value. The value can be changed by selecting the button, whereupon a text
entry area appears in place of the button. You can type a new value followed
by Return. If the GUI tool doesn’t like your new value, it reserves the right to
change it to an acceptable value that is displayed again on the button.

The pushbutton labeled 12 shown in Figure 9-2, p.344 is a variable edit box
(displaying the value of the variable w). If you press this button, it is replaced
by the “w value” text entry area as shown in Figure 9-3. After entering a value
from the keyboard, the text entry area is replaced by a button that contains the
new value.

Figure 9-3 PGUI Example Dialog after Pressing the 12 Button
346

9

9
Graphical User Interface
■ A slider resembles a linear potentiometer and its value is changed by a linear
motion of the handle. The position of the slider ’s handle represents its value.
Usually the limits of the slider are shown at its ends. Figure 9-3 shows a slider
with minimum value 0 and maximum value 10. Its current value is about 6.
You can change the value of a slider in several ways:

● Place the mouse pointer on the handle, depress the left mouse button, and
drag the handle to the desired location. Some GUI tools might do
something (for example, change a plot) as you drag the handle. In other
cases, nothing happens until you release the handle at the new value.

● Click the middle button at the new value.

● Click the left button away from the handle to increase or decrease the
value a small amount. Holding the button down makes the handle
steadily move towards the cursor.

Often a value is displayed with a slider and a variable edit box (for example,
the leadlag demo). This allows the value to be changed either by dragging the
slider or entering a new value via the keyboard.

■ Plots, which can accept graphical input from the user, can also appear in GUI
windows. You can use the left mouse button for graphical input, the middle
for plot zooming, and the right for plot data value viewing:

● The function of the left mouse button depends upon the particular tool
and plot. Often a tool allows a curve to be grabbed and dragged by
depressing the left mouse button with the cursor near the curve, dragging
the mouse with the button down, and then releasing at a new position.

● Pressing the middle mouse button anywhere in the plot creates a box
containing a magnification of a small area of the plot centered at the
cursor. The middle mouse button can be held down and dragged, which
creates an effect similar to dragging a magnifying glass across the plot.
The center of the zoomed window corresponds to the tip of the cursor.

Pressing Control with the middle mouse button increases the size of the
magnified box. Pressing Shift with the middle mouse button increases the
zoom factor. Pressing Shift and Control with middle mouse button yields a
large zoom box with a large magnification factor.

● By pointing at or near a curve or object in a plot and pressing the right
mouse button, a small window appears; it identifies the curve or object
and gives the coordinates and index of the nearest data value.

If you press and drag the right mouse button, the selected curve is
tracked, even if another curve comes close.
347

MATRIXX 7.0
Xmath User’s Guide
Pressing Shift along with the right mouse button allows the user to get
values on the piecewise line curve that interpolates the data values. In
this case “index 45.7” means that the selected plot point is between the
45th and 46th curve index entries.

9.3 GUI Programming Overview

The Programmable GUI allows you to perform the following tasks:

■ Design the layout and appearance of windows.

■ Create, destroy, and manipulate these windows.

■ Bind Xmath variables to various objects in the windows.

■ Arrange for Xmath code to be executed when the user interacts with the
windows.

These tasks are accomplished as follows:

■ Windows are created, destroyed, and manipulated using a number of Xmath
functions.

■ Bindings between Xmath variables and sliders, pushbuttons, plotted curves,
and other objects in the GUI windows are specified by setting the appropriate
widget attribute.

■ The execution of particular pieces of Xmath code when the user interacts with
a GUI window is also specified by setting the appropriate widget attribute.

These tasks are described in more detail later in this chapter and in the MATRIXX
online Help.

9.4 Concepts and Terminology

A single GUI application is called a tool. The components that make up a
complete tool are described in the following section. Usually a user explicitly
348

9

9
Graphical User Interface
starts a tool by sending a command (MSC) to Xmath. The MSC calls some Xmath
functions that tell the GUI to create a new tool, one or more windows, and their
children widgets. This is what happens when you type guidemo. After the MSC
creates one or more initial windows, the MSC returns and Xmath is again idle.
Tools can be launched in other ways. For example, an MSF, script file, or another
tool can launch new tools.

Once a tool is created, it is then used as the parent of all subsequent windows
created. Each window is then in turn used as the parent of each widget in that
window. In this way a hierarchy of the tool is defined. As it is created, each object
is given various attributes that define different aspects of appearance and
behavior, including the binding hooks back to Xmath. The binding of variables to
various objects on a window is a key feature of the GUI. For example, a variable
can be bound to a slider in a window. Whenever the user moves the slider, the
Xmath variable is updated. Similarly, whenever the Xmath variable is updated,
the slider moves. Variables can also be bound to plotted curves: whenever the
variable is changed, the plotted curve changes accordingly. With variable binding,
you don’t have to explicitly update a display; merely changing the value of the
variable (reassigning it) causes all displays bound to the variable to update
automatically.

A second key feature of the GUI is the Xmath callback. In itself, updating a
variable when the user moves a slider isn’t useful. Every time the user interacts
with a window (that is, moves a slider or selects a pushbutton), you can specify
certain Xmath code to be executed through an Xmath callback. An Xmath callback
simply means that the tool’s MSC is called with arguments that describe what the
user just did. Based on these arguments, the MSC can take whatever action is
required.

The GUI is event driven. Normally, Xmath is idle. When the user does something
to a GUI window, variables, if any, are updated, and Xmath callback(s), if any, are
executed. Once the Xmath callbacks finish (that is, the MSC returns), Xmath is
again idle, waiting for a new event.

9.4.1 Conceptual Example

A conceptual example can show how these features work together to form a
simple tool. Suppose we have some Xmath code computey.msc that computes
some value y given some parameter value x. Our tool arranges for the variable y
to be bound to a read-only slider and the variable x to be bound to an interactive
slider. The tool arranges for the Xmath code computey.msc to be executed when
the interactive slider is released.
349

MATRIXX 7.0
Xmath User’s Guide
When our tool is invoked, a window containing the sliders appears. When the
user moves and releases the interactive slider, the variable x is first updated
(assigned its new value) and then the Xmath code is executed (using the new
value of x). The Xmath code assigns a new value to the variable y. Since y is bound
to the read-only slider, the read-only slider changes to reflect the new value of y.

It is interesting to compare the original Xmath code with the tool described above
from the user ’s point of view. The user interacts with the original code by
repeatedly typing commands into the Xmath Command window such as x=3.2
followed by computey followed by y, which prints the new value of y to the
Xmath log area. Thus, user input and output are via the Xmath command and log
areas, respectively, and both are alphanumeric in form.

In contrast, the user interacts with the tool described above by simply grabbing
and moving the interactive slider. After it is released, the new value of y is
displayed on the read-only slider. Thus, user input and output are via the sliders
in the tool’s window and graphical in form. In effect, we have implemented a
completely graphical interface for our original Xmath code computey.msc. In fact,
once the graphical tool is running, we can iconify all of the standard Xmath
windows, and someone completely unfamiliar with Xmath can use the code
computey through the slider and bargraph.

9.4.2 Anatomy of a GUI Tool

It is possible to type commands directly in the Xmath Command window that
instruct the GUI to create a tool and windows. Usually, however, a GUI tool
consists of MathScript Command files (MSCs), MathScript Function files (MSFs),
and a Help file (.hlp):

■ An MSC contains the code for starting the GUI tool and all the code for the
Xmath callbacks. An Xmath callback simply calls the MSC with particular
arguments, and the MSC takes the corresponding action based on these
arguments. If the tool is smaller, the MSC may also contain all the widget
creation code as well. A large tool can consist of multiple MSCs. Usually
though all the tool callbacks are in one MSC. The tool’s MSC filename is the
tool name followed by the extension, .msc.

■ MSFs are often used if the tool is quite large. An MSF can help organize and
group widget creation code to a particular window or functionality. The MSC
can call an MSF at the appropriate time to create portions of the tools GUI as
needed.
350

9

9
Graphical User Interface
■ A Help file contains one or more Help messages or strings. The tool’s Help
file is the tool name followed by the extension, .hlp.

These files are described in more detail in the following sections. See the GUI
demos in $XMATH/demos/gui for examples of each of these files. Each of the
demos is implemented as an MSC script, possibly an MSF script, and an ASCII file
that contains the Help message text and global plot options. You can develop and
debug GUI applications rapidly with Xmath’s interactive environment and
debugger.

9.4.3 MSC File

The tool’s MSC is declared with three arguments:

command MSC_name {fragname, widgetname, instance}

When an Xmath callback occurs, the MSC is called with two strings (fragname
and widgetname), and an integer (instance). The string fragname is the name of
the Xmath code fragment to execute. The string widgetname is the name of the
widget that caused the callback (usually this will be ignored, unless a single
Xmath code fragment needs to handle user input into different widgets). Finally,
the instance number uniquely identifies multiple instances of the same window.
For example, if two identical windows are instantiated (see the MATRIXX online
Help uiWindow topic) and the user selects a pushbutton on each window, one
Xmath callback will have instance = 1, and the other will have instance = 2.

Usually each Xmath code fragment is executed using goto, so each Xmath code
fragment name is written as a goto label. Also, when the MSC is invoked with no
arguments, it is often convenient (but not necessary) to arrange that the tool itself
be launched. Therefore, a template MSC appears as follows:

Command MSC_name {fragName, widgetName, instance}

if (exist(fragName))
goto *fragName;

else # start tool
[CODE LAUNCH TOOL GOES HERE]
return;

endif

<ButtonPressed> #executed when fragname == "ButtonPressed"
[CODE TO EXECUTE WHEN BUTTON IS PRESSED]
return;

<SliderMoved> #executed when fragname == "SliderMoved"
[CODE TO EXECUTE WHEN SLIDER IS MOVED]
return;
351

MATRIXX 7.0
Xmath User’s Guide
<DoQuit> # executed when fragname == "DoQuit"
[CODE TO QUIT TOOL]
return;

endCommand

9.4.4 Help File

The tool’s Help file is where the tool’s Help messages are stored. Each Help
message (or Help fragment) is preceded by a name or label. The name is used to
refer to the particular Help fragment. The order of the Help fragments in the Help
file is not important. The Help file can be quite large if necessary; fragments are
read only when needed.

Each Help fragment has the form:

<helpFragName>
This is the Help text that will be displayed.
The Help text can contain many lines. The indent of
the initial line is stripped from all lines.
comment lines (lines starting with '#') are ignored,
although an embedded '#' will not be treated
specially. Use '\#' at the start of a line if
you need a '#' at the start of a non-comment line.

The Help fragment name helpFragName is any string of your choice. The indent
of the initial line of the Help fragment will be stripped off all the lines in the Help
fragment when the Help fragment is displayed. This assists in the legibility of the
Help file.

One Help fragment can be included inside another with an include directive:

<helpFrag1>
Note that:
!#include <helpFrag1>

That's all folks!

<helpFrag2>
This Help text contains two
lines.

The extra indent of the include line is applied to the entire included fragment, so
the above is equivalent to:

<helpFrag1>
Note that:

This Help text contains two
lines.

That's all folks.
352

9

9
Graphical User Interface
The include facility is useful for grouping Help messages on specific topics into a
single large overview message. For an example, see the help file for the leadlag
demo ($XMATH/demos/gui/leadlag.hlp).

The Help fragment name can be followed by an optional title:

<helpFragName> Help Dialog title
 This is the Help text that will be displayed.
The Help text can contain many lines.

Depending on the windowing system you use, the title should be displayed in the
top border of the Help window.

The Help file is really a database of strings accessed by name. The Help file can be
used to store strings or string arrays that a tool needs. Long options to the uiPlo()
function, for example, can be placed in the Help file. This feature is shown in the
binding1 demo ($XMATH/demos/gui/binding1.hlp).

9.5 Xmath GUI Functions

The Xmath GUI functions are categorized as follows:

■ uiToolCreate()—creates a function for a tool.

■ uiWindow()—creates a function for a top-level window of a tool.

■ uiPanel(), uiTab(), and uiTable()—create container regions in a window or
other container.

■ uiMenu() and uiMenuItem()—create menu bars, pulldown menus, popup
menus, and menu items.

■ uiButton(), uiComboBox(), uiList(), uiSeparator(), uiSlider(), uiText(),
uiVarChoic()e, uiVarEdit(), uiVarView(), and uiLabel()—are controls for
windows and containers for user interaction and displaying data.

■ uiPlotArea()—creates a special control for displaying two-dimensional
graphical plots.

■ uiDestroy(), uiExist(), and uiHandle()—are PGUI object operations for
checking existence, handle/name conversions and generic destruction.

■ uiHide() and uiShow()—display and hide a PGUI object.
353

MATRIXX 7.0
Xmath User’s Guide
■ uiGetValue() and uiSetValue()—get or set a PGUI object’s resources.

■ uiFlush()—forces the update of the objects displayed.

■ uiTimer()—invokes an Xmath callback after a given amount of time has
elapsed.

■ uiPlot() and uiPlotGet()—are commands for generating two-dimensional
plots in a uiPlotArea and getting user ’s input to the plot.

■ uiFileSelection(), uiMessage(), and uiPrompt()—are predefined dialogs for
selecting files, displaying messages, and prompting the user for input.

■ uiWindowDeiconify() and uiWindowIconify()—deiconify and iconify a
window.

■ uiWindowLower() and uiWindowRaise()—lower and raise a window.

For more information on PGUI functions, see the MATRIXX online Help topic
MathScript Programming, Programmable GUI.

9.6 Tutorial

In this section we discuss two tools: the pushbutton and the calculator examples.
These tools perform trivial functions; the point is not their purpose but their
operation.

9.6.1 Pushbutton

Example 9-1 shows the ex1.msc file, located in the $XMATH/demos/gui directory.

Example 9-1 Pushbutton Creation

command ex1 {fragname, widgetname, instance}

alias T "ex1"

if(exist(fragname))
goto *fragname;

else
tl = uiToolCreate("ex1");
wn = uiWindow(tl,{name = "win", title = "Tutorial"});
void = uiButton(wn,{
354

9

9
Graphical User Interface
text = "Press This Button",
xmath = "ButtonPress"});

main.count = 1;
void = uiShow(wn);

return;
endif

<ButtonPress>
main.count = main.count + 1;
display sprintf("Button Press count: %d", main.count);
if(main.count >= 5)

void=uiDestroy("ex1");
endif;
return;

endcommand

When the user types

ex1

The ex1 tool window appears.

Let’s investigate the steps that produced this window. When the user types ex1,
the MSC ex1.msc is invoked with no arguments. Therefore, the if conditional

if(exist(fragname))

fails, and the else clause is executed. The statement

tl = uiToolCreate("ex1");

creates the new tool ex1. (If the tool already existed, this step would first destroy
the tool and all its windows before creating a new tool.) The value returned and
stored in tl is the tool’s handle. All GUI creation routines return an object handle
that is used when creating the tool’s windows; the object handle can also be used
to reference the tool for other GUI functions, such as uiExist() and uiDestroy(. In
addition to the handle, some operations on a tool can also be invoked with the
tool’s name.

The next statement:

wn = uiWindow(tl,{name = "win", title = "Tutorial"});

actually creates a new window. The keyword arguments provide attribute
information about a widget, the window in this case. You can provide a widget
name—win in this case—so that you can reference the widget by its name instead
of its handle.
355

MATRIXX 7.0
Xmath User’s Guide
void = uiButton(wn,{text = "Press This Button",
 xmath = "ButtonPress"});

creates a single button as a child of the window. Since no type keyword is
specified, the default type “button” is created. The text keyword specifies the text
to appear on the button face and the xmath keyword designates the callback
fragment to execute when the button is pressed.

At this point, the window is still not visible. The call to uiShow() makes the
window appear when desired. In this case, note that the call to uiShow() takes the
handle returned from the uiWindow() call. The call to uiShow() could just as well
appear as follows, which uses the name passed into the uiWindow() function.:

uiShow("ex1","PushBWin")

While handles are slightly more efficient at times, they are less convenient.
Therefore, both methods are provided.

Finally, the MSC initializes a global variable that is used to count button presses
and then returns:

main.count = 1;
return;

When the user clicks the button, the button checks to see if it has a value for its
xmath attribute. In this case it is set to “ButtonPress” so the button will invoke the
tool’s MSC as:

ex1 "ButtonPress", "Push"

We use the term Xmath callback to describe the calling of the tool’s MSC in this
way. The first argument is the argument value set as the xmath attribute, the
second argument is the pushbutton’s name, and the third argument is the
instance number of the window, which will always be 1 (unless we create
multiple instances of the same window). Therefore, when the user activates the
button, it is equivalent to typing:

ex1 "ButtonPress", "Push"

When called with these arguments, the MSC executes the code

main.count = main.count + 1;
display sprintf("Button press count: %d", main.count);
if(main.count >= 5)
 void = uiDestroy("ex1");
endif;
return;
356

9

9
Graphical User Interface
This increments the count variable and displays a message in Xmath’s log area. If
the button has been pressed five times, you can see the following messages in the
log area:

Button press count: 2
Button press count: 3
Button press count: 4
Button press count: 5

Then the tool is destroyed, which causes the window to disappear.

We use a global variable (main.count) so that its value is maintained between calls
to the tool’s MSC. Local variables in an MSC disappear when the MSC returns.
You might notice that most GUI tools create their own partitions for storing all
their global variables.

9.6.2 Calculator

Example 9-2 shows the ex2.msc file, located in the $XMATH/demos/gui directory.

Example 9-2 Calculator

command ex2 {fragname, widgetname, instance}

alias T "ex2"

if(exist(fragname))
goto *fragname;

else
tl=uiToolCreate("ex2")
wn=uiWindow(tl,{name = "win", title="Tutorial"});
tb=uiTable(wn,{columns = 2});
void = uiLabel(tb,{text = "Operand 1"});
void = uiSlider(tb,{varname = "op1",

xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm",
min = -1, max = 1})

void =uiVarChoice(tb,{text="Operation",
xmath="NewOperation",
varname= "operation", flags = "H",
items=["plus", "minus", "times"],
values=[1,2,3]});

void = uiLabel(tb,{text="Operand 2"})
void = uiSlider(tb,{varname = "op2",

xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm",
min = -1, max = 1})

void = uiSeparator(tb,{colspan = 2});
void = uiLabel(tb,{text="Result"})
void = uiSlider(tb,{varname = "result",
357

MATRIXX 7.0
Xmath User’s Guide
xmath="NewOperand",
xmathdrag="NewOperand", flags = "bhdms",
readonly, min = -2, max = 2})

void = uiSeparator(tb,{colspan = 2});
void = uiButton(tb,{text = "Quit",

col = 1, xmath = "DoQuit"});
main.op1=0;
main.op2=0;
main.operation=1;
ex2 "NewOperation";
void = uiShow(wn);
return;

endif

<NewOperation>
<NewOperand>

if(main.operation == 1)
main.result = main.op1 + main.op2;

elseif (main.operation == 2)
main.result = main.op1 - main.op2;

elseif (main.operation == 3)
main.result = main.op1 * main.op2;

endif
return;

<DoQuit>
uiDestroy("ex2");
return;

endcommand

When the user types

ex2

a window showing a selectable operation between two operands appears. This
window is created using the same steps as the previous tutorial. However, it uses
a few more widgets, the first of which is the uiTable(). A table is used for laying
out a number of other objects in regular rows and columns.

tb = uiTable(wn,{columns=2});

The keyword columns does two things:

■ It sets the number of columns the table will have

■ It specifies that the table will fill rows first

Widgets will be added across the table, one per column.

void = uiLabel(tb,{text = "Operand 1"});

creates a label containing text string, “Operand 1.”
358

9

9
Graphical User Interface
void = uiSlider(tb,{varname = "op1", xmath="NewOperand",
 xmathdrag="NewOperand", flags = "hdm", min = -1, max = 1})

creates a slider bound to the Xmath variable op1. Each time the user sets the slider
to a new value, and each time the slider is dragged, the variable op1 is updated
and the Xmath callback NewOperand is called. (Similarly, if the variable op1 is set
to a new value, the slider moves to the corresponding position.) The flag hdm
specifies that the slider is horizontal. The Xmath variable is updated as the user
drags the slider, and the minimum and maximum of -1 and 1 are enforced (even if
the Xmath variable is set by the programmer to a value outside this interval).

void = uiVarChoice(tb,{text="Operation",xmath="NewOperation",
varname = "operation", flags="H", items=["plus", "minus",
 "times"], values=[1,2,3]});

creates two entries in the table:

■ A label containing the text “Operation”

■ A box containing three radio buttons with the choices "plus", "minus", and
"times" bound to the Xmath variable operation.

When the user selects one of these choices, the values 1, 2, and 3, respectively,
are assigned to the variable operation. (Similarly, if the variable is set to one of
these values, the corresponding radio button is set.)

Whenever the user selects a new toggle button, the Xmath callback NewOperation
is called.

void = uiLabel(tb,{text="Operand 2"})

creates a label containing the text string, “Operand 2.”

void = uiSlider(tb,{varname = "op2", xmath="NewOperand",
xmathdrag = "NewOperand", flags = "hdm",
 min = -1, max = 1})

creates a slider bound to the Xmath variable op2. This slider is otherwise the same
as the first.

void = uiSeparator(tb,{colspan = 2});

draws a horizontal line in the row. The colspan = 2 keyword expression causes it
to occupy both columns in the table.

void = uiLabel(tb,{text="Result"})

creates a label containing the text “Result.”
359

MATRIXX 7.0
Xmath User’s Guide
void = uiSlider(tb,{varname = "result", xmath="NewOperand",
xmathdrag = "NewOperand", flags = "bhdms",
 readonly, min = -2, max = 2})

creates a read-only slider bound to the Xmath variable result. The user cannot
drag this slider because of the readonly keyword, but, whenever the Xmath
variable result is set to a new value, the slider changes accordingly. The limits of
this slider are -2 and 2.

When the user sets the Operand 1 slider to a new value, the variable op1 is set to
the new value, and the Xmath callback NewOperand is called. If the new value is,
for example, 0.75, these operations are identical to the user typing the statements:

main.op1 = 0.75;
ex2 "NewOperand", "dontcare",1;

(The actual widgetname argument will be different, but this isn’t relevant to the
discussion.)

This callback causes the following Xmath code to be executed:

<NewOperation>
<NewOperand>

if(main.operation == 1)
main.result = main.op1 + main.op2;

elseif (main.operation == 2)
main.result = main.op1 - main.op2;

elseif (main.operation == 3)
main.result = main.op1 * main.op2;

endif
return;

Based on the operation, the new result is computed. Since the variable main.result
is bound to the bottom slider, the new value is automatically displayed when the
variable is assigned. Similarly, when the user changes the operation, the same
Xmath code is called to compute the new result.

For additional examples and descriptions, see the MATRIXX online Help.
360

9

9
Graphical User Interface
9.7 Translating Version 5.X GUI Files to Version 6.X PGUI Files

This section describes the two utilities for translating Version 5.X GUI files to
Version 6.X PGUI files, instructions on executing these scripts, details on using the
translator, and some minor limitations.

9.7.1 Overview

Due to the significant changes in the Xmath Programmable GUI (PGUI) syntax in
MATRIXX Version 6.X, the to60pgui utility has been created to facilitate the
transition of old graphical tools to the new syntax (see 9.4.2 Anatomy of a GUI Tool,
p.350). This utility consists of a pair of Perl scripts that convert the resource and
MSC or MSF files from Version 5.X syntax to the Version 6.X syntax.

9.7.2 Execution

The easiest way to execute these Perl scripts is to copy them to a working
directory. Ensure that Perl is in your path and copy the tool to be translated to that
working directory. Then execute the main script with the following command:

perl to60pgui.pl Mytool mytool.msc

where Mytool is the X resource file used by mytool.msc. A resource file is a
collection of resource settings that describe the appearance of the windows,

This script modifies the original mytool.msc file (make sure you have a backup)
and creates a new file named mytool_build.msf from the resource file. You can then
compare the files and make any needed modifications. After that you should be
able to run the MSC as before.

The Perl script restopgui.pl converts the X resource file, Mytool, to an MSF file in
the new format. To run the resource translator restopgui.pl independently, use
the following syntax:

perl restopgui.pl Mytool

where Mytool is the X resource file.

NOTE: MSC and MSF files are translated in place. Make sure you have a backup.

NOTE: The tool could also be an MSF in which case you provide the appropriate
name and extension.
361

MATRIXX 7.0
Xmath User’s Guide
This script creates a new MSF file with the name mytool_build.msf.

9.7.3 Details

The MSC translator scans through an MSC file and changes any Version 5.X
GuiFunction() to a Version 6.X uiFunction() with the exception of GuiShellCreate()
and GuiDialogCreate(). These functions have no counterpart in the Version 6.X
PGUI because there is no need to create a shell separately from creating a window.
However, in the old GUI these calls caused the window and its children to be
created, so they are not just omitted from the new file. Instead they are changed to
a call to an MSF file that is generated from the tool’s X resource file. This call to the
new MSF file has the same result as calling GuiShellCreate() or
GuiDialogCreate() in that the window specified and its children are created.

For example, in our Fourier tool a GuiShellCreate() call such as:

GuiShellCreate("fourier", "MainWin", "Fourier Tool", "fourier tool");

becomes

Fourier_build("fourier", "MAINWIN", "Fourier Tool", "fourier tool");

Notice that the second argument is converted to uppercase because the second
argument in the fourier_build.msf file is used as the fragment label. The third and
fourth arguments are optional as they are in GuiShellCreate(). See Limitations.

The resource file conversion results in a new MSF file named
resourcefile_build.msf. For example, Fourier becomes fourier_build.msf. The
resource file conversion is the biggest task of the translator. It takes all of the X
resource specifications and creates a hierarchy of Xmath calls to build the desired
user interface. The commands in the resulting MSF file are grouped by window
and indented to show the hierarchy. Fragment labels separate the code associated
with each window so each window can be created as needed.

9.7.4 Limitations

The PGUI translators have some minor limitations because some features are not
supported by PGUI or X resource settings need human intervention to be
properly assigned. More specifically, X resources set in a global sense, such as a
Motif class of widget, are not handled. Also, X resources set to affect all children
of a certain widget are not handled. Examples of these are:

*MyTool*background: red
362

9

9
Graphical User Interface
and

*MyTool*MainWin*background: redvisible

Specific X resources, such as the following, are not supported:

*MyTool*MyText.marginwidth: 4

In general, anything that can’t automatically be translated is set as a comment
using uiSetValue. The generic comments appear in the beginning of the MSF file
and the more specific ones appear after the creation of the widget in question.

Within an MSC, calls to GuiSetValue() are not translated if they are of the form

GuiSetValue(T, "resource block");

where resource block is one or more X resource settings to be applied to the
resource database. For both GuiSetValue() and GuiGetValue(), if the resource
block is not known, then the command is not translated.

For additional help with any PGUI translation, contact MATRIXXCustomer
Support as described in Chapter 2 of the MATRIXX Getting Started Guide.
363

MATRIXX 7.0
Xmath User’s Guide
364

A

X Windows and Motif
This appendix introduces X Windows and the Motif window manager. If you are
not using Motif, much of the Motif material will still be useful to you, as Xmath
uses Motif

The material in this appendix gives general information that allows an
inexperienced X Windows or Motif user to use Xmath and X at a novice level.
However, it is not a replacement for X Windows documentation or
documentation appropriate to your window manager.

A.1 X Window System

What is X Windows? “The X Window System, commonly referred to as X, is a
network-based graphics window system that was developed at MIT in 1984.”1

Xmath can be used with any window manager that runs as a layer over X
Windows. X is largely transparent from Xmath; usually you only notice it while
logging in or out.

Your X installation can be very complicated. If you are unfamiliar with X, you
should consult the documentation or ask your system manager about your
installation.

1. Quercia, Valerie & O’Reilly, Tim, The Definitive Guides to the X Window System, Volume 3: X
Window System User’s Guide (O’Reilly & Associates, Inc., 1988, 1989), p 5.
365

MATRIXX 7.0
Xmath User’s Guide
You should know the answers to the following questions:

■ Does your installation have an autostart procedure for X Windows, or must
you start X Windows manually?

■ If you start manually, what is the command to initialize X Windows at your
site? (Usually it is xinit.)

■ Are X Windows, window manager, and Xmath available locally, or must you
access them across a network? If you are getting these applications from a
remote source, what special instructions apply?

A.1.1 Starting X

You should see your system manager to verify the correct way to start X at your
installation. The normal procedure for starting X is as follows:

1. Log in at the system prompt.

2. Type xinit.

A.1.2 X Terminology

This section defines some general terms this manual uses to direct your
interaction with Xmath windows and menus. For comprehensive information,
consult X Windows documentation or man pages.

Software Terms

Creating an environment for Xmath requires several types of software that are
usually transparent to you. They are mentioned briefly here so that you have a
point of reference if you see these terms in error messages, default files, etc.

The lowest-level software is the operating system—currently we assume UNIX.
On top of that you must have X Windows and a window manager (such as Motif).

X Windows is a windowing system. A windowing system allows many processes
to exist simultaneously, each running in a different window. X keeps track of
input and output data for all windows.

A window manager is a client (an application) that describes how a window looks
and allows you to manipulate windows (move, resize, stack, etc.). Xmath could be
366

A

A
X Windows and Motif
run without a window manager, but there would be no borders, the windows
couldn’t be moved or resized, and so on.

The final element is the server. In this context, the server communicates X graphics
instructions to the screen.

In general, X tells how a window is drawn, a window manager defines its
appearance and activity, and the server implements these instructions on your
graphics display.

Mouse Terms

A list of the mouse conventions is on p.13. Some common mouse instructions are:

click — Press and quickly release a mouse button. If click is used without a button
designation, MB1 is assumed. For example, “click the root window.”

double–click — Two clicks in quick succession. Double-click without a button
designation assumes MB1.

drag — Hold down a mouse button while moving the mouse. This action is used
for movement and resizing. Release the button when the desired result is
obtained. Drag assumes MB1.

press, push — ““Press” or “push” can be used interchangeably with “click MB1.”
These terms are often used for buttons. For example, “press the Lock button.”

A.2 Motif Window Manager

As discussed earlier, a window manager allows you to manipulate windows. In
theory, you should be able to use any window manager that is compatible with
X11 (see the System Administrator’s Guide for your operating system; this
documents UNIX window managers under which Xmath has been tested). The
window manager creates frames and is also responsible for any window
functions in X Windows and Xmath. The graphics in this manual use standard
Motif frames.
367

MATRIXX 7.0
Xmath User’s Guide
A.2.1 Motif Frame Components

The frame is basic to all windows. Figure A-1 shows an xterm and labels each
feature in the frame.

■ The rectangular button shown in Figure A-1 activates the Default Window
Menu. This button has seven selections to change the window’s appearance
or position. These are discussed in Default Window Menu.

■ The title area displays the name of the window. Click on this area (not
including the buttons), then drag to move the window.

■ The title bar is the title area and the buttons.

■ The Minimize button turns the window into an icon (a small manageable
graphic). To minimize (or iconify) a window, click MB1 on the Minimize button.
The resulting icon has the same name as the window. To bring the window
back, click MB1 on the icon.

■ The Maximize button enlarges a window to fill the screen (it is not the opposite
of Minimize). To maximize a window, click MB1 on the Maximize button. To
return the window to its former size, click the Maximize button again.

Default Window Menu

To view this menu, click MB1 over the rectangle. You can see the selection box
move as you run the mouse up and down the menu. Click MB1 to select. If an
item is not available, it will be grayed out. If you don’t want to make a selection,
move the mouse off the menu and release the mouse click in a neutral area (the
root window, for example).

■ Restore returns a minimized or maximized window to its original state.

Figure A-1 Window Frame

Minimize MaximizeDefault Window Menu Title Area

Title
Bar
368

A

A
X Windows and Motif
■ Move enables you to position a window anywhere you wish. The cursor will
attach to the center of the window.

■ Size resizes the window.

■ Minimize reduces a window to an icon.

■ Maximize enlarges a window so that it fills the entire screen.

■ Lower puts the current window in back of any window(s) sharing the same
space.

■ Close terminates the client. In Xmath it is preferable to use File→Quit for the
Xmath Commands window or File→Close Window from other Xmath windows,
rather than closing from the Default Window Menu.

For instructions on making menu selections using keystrokes, see A.2.4 Using
Menus Without the Mouse, p.371.

Frame Buttons

Minimize

Reduces the window to an icon; double-click or select Restore from the Default
Window Menu to return it to original size. Has the same effect as Minimize on the
Default Window Menu.

Maximize

Enlarges the window to fill the entire screen; click the Maximize button again, or
select Restore from the Default Window Menu to restore it to original size. Has the
same effect as Maximize on the Default Window Menu.

Window Operations

These operations can be accomplished without using the Default Window Menu.
Move the pointer over a window’s frame. Notice the changes in the pointer. The
pointer symbols are shown in Figure A-2.
369

MATRIXX 7.0
Xmath User’s Guide
Resize and move require you to drag:

resize — To change the size in one direction, place the cursor over an edge, then
drag to the desired dimension. To simultaneously change two dimensions,
place the cursor over a corner, then drag to new size.

move — To move a window, place the cursor in the title area, then drag to the
desired location.

A window is raised (brought to the front) whenever you click on its Title area. The
only way to lower a window (send it to the back) is from the Default Window menu.

A.2.2 Mouse Focus and the Pointer

When you move the mouse, the pointer moves on the display. Pointer position
governs input focus (that is, where keyboard input appears). That is, the pointer
determines the active window.

In Motif (and most other window managers) there are two ways to give input
focus. For simplicity, let’s describe them as point and point-and-click. The point
method means that input is directed to the window under the pointer. For point-
and-click, you must position the cursor over the target window, and then click
before you have focus.

Figure A-2 Pointer Symbols

For movement, changes to a fleur.

For menus, points opposite direction from selection arrow.

If a corner is selected, the chosen corner is displayed.

If an edge is selected, the chosen edge is displayed.

A large X is visible when the pointer is over the root window.

The "I-beam" appears when the pointer is over an area that accepts tex

For resize, the pointer changes to a symbol appropriate to the selection
370

A

A
X Windows and Motif
There are several pointer symbols to become familiar with. The pointer symbol
changes according to the context, as described in Figure A-2.

Consult your window manager documentation or see your system manager for
more information.

A.2.3 Copying and Pasting with Motif

You may find it easier to cut and paste available text (such as pathnames, etc.)
instead of retyping. Your machine’s selecting, copying, and pasting methods are
valid for both X Windows and Xmath.

The standard Motif method is:

1. Point to the desired text and drag until everything you want appears in
reverse video (is highlighted). Avoid highlighting extra characters.

2. Point to the destination and click MB2.

As an alternative to dragging, use one of the following three mouse-click selection
sequences. To select a word, point anywhere within the desired word and double-
click. To select a line, point anywhere on the line and click three times. To select all
text in an Xmath window, point and click four times.

These click sequences are often used in the Xmath Commands window to copy text
from the log area and paste it into the command area.

A.2.4 Using Menus Without the Mouse

The Motif window manager makes it possible to use Xmath menus via the
keyboard. To make a menu selection you normally place the pointer over the
menu, drag down MB1, and release when the desired selection is highlighted. If
you look at the Commands window menu bar, you will see that the first character
of each pull-down is underlined.

1. To invoke a menu, make sure the proper window has focus.

Press the Meta key (see Table 1-5, p.15 for equivalents across platforms),
followed by the character underlined in the menu bar. For example, press Meta-
e to invoke the Edit menu. Note that although the underlined letter is
capitalized, only lowercase letters will work (this is a Motif limitation). Use
the up and down arrow keys to travel up and down the available options. Hit
Return to invoke an option.
371

MATRIXX 7.0
Xmath User’s Guide
2. Once you are in the menu bar, use the left and right arrow keys to move along
the menu bar.

3. If a submenu is available, an arrow points to the right at the end of the entry.
Cursor up or down to the submenu and press the right arrow key to pop up
the submenu. To go to a top-level menu, keep pressing the left or right arrow
keys.

4. Press Esc or F10 to dismiss the latest menu.

The above option works with any Xmath window.

A.2.5 Using a Motif File Selection Dialog

Figure A-3 shows a typical dialog that uses the Motif file selection dialog. Most
dialogs have the same fields, but some actions may not require all fields. The
instructions below show UNIX file paths.

1. The first step is usually to make a selection from the Directories (the column on
the left): either click on a selection and press Filter, or double-click on the
selection. You may need to use the scroll bars to bring the name in view.

Alternatively, type in the Filter field to alter the search parameters. However,
you must have a file specification, even if it is only the wildcard *. To start the
search, either press Return or push the Filter button at the bottom of the dialog.

Files meeting the filter criteria are displayed in the Files field. To search for the
same parameters in another place, double-click on a new entry in the
Directories field. Note that both columns can be scrolled to view long names.

2. To make a selection from the Files field, either click on an entry and press
Return, or click on an entry and push OK, or double-click on the file. Note that
the selected file will be displayed in the Selection field.
372

A

A
X Windows and Motif
A.3 Changing Resource Parameters

If you want to change Xmath’s appearance (color, etc.), you must be familiar with
how X Windows works. The way Xmath looks is defined in a resource file, which
contains hundreds of settings. Xmath looks for a resource file that isolates
resources that directly affect Xmath (see Table A-1); this file often resides in your
home directory and is read when X windows is started. (If you are on a network,
you may not have a copy in your home directory.)

Figure A-3 Exec File Selection Dialog

Table A-1 Resource File Default Location

ISI Top Level Resource File

UNIX $ISIHOME $XMATH/etc/Xmath
373

MATRIXX 7.0
Xmath User’s Guide
The $XMATH/etc/Xmath file contains default settings for Xmath that you may
want to change or override. Do not modify the $XMATH/etc/Xmath file. Instead,
use a local version in your home directory to specify any changes. Your version
only needs to contain settings that differ from the defaults. Example 9-3 shows a
sample Xmath file.

Example 9-3 Sample Xmath File

!A local Xmath file must reside in your home directory. This file
!changes window sizes and has them appear staggered on the right side
!of the screen:
!--
! COMMAND WINDOW
*main.geometry: 535x695-5+85
*main*log.rows: 32
*main*command.rows: 7

! GRAPHICS WINDOW
*graphicsW.geometry: 545x450-13+93

! HELP WINDOW
*helpW.geometry: -21+101
*helpW*text.rows: 40

! DEBUGGER WINDOW
*debuggerW.geometry: -29+109
*debuggerW*text.rows: 30

Example 9-3 deals with window dimension and placement only, but other
common changes might be changes to the key bindings or window colors. To
make your own Xmath file, follow this procedure:

1. Copy Xmath from its default location (see Table A-1) to your home directory.

2. Use a text editor to alter the local Xmath file.

If you are changing the key bindings to a style other than emacs, the settings
will be commented out with exclamation marks (!); make sure these are
removed in your personal file.

3. After making changes, delete all unchanged portions.

Your changes will be implemented the next time you invoke Xmath. When
you start Xmath, the Xmath file in the default installation location is read first,
followed by the Xmath file in your home directory. (This is why duplications
should be deleted; startup will be slower if they exist.)
374

A

A
X Windows and Motif
A.3.1 Remapping Your Keyboard

Because the keyboards in use with X workstations vary so much between
platforms, vendors, and countries, you may at some point wish to change the key
bindings Xmath uses.

Changing Key Bindings in X

A machine-specific key code is associated with each key on your keyboard.
Within the X Window system, you can use keysyms (key symbols) to make this
machine-specific code produce whatever key-binding code you need. To get the
complete list of key codes for all the keys on your keyboard, type:

xmodmap -pk

xmodmap gives output similar to that shown in Example 9-4.

Example 9-4 Sample KeySym Output

There are 2 KeySyms per KeyCode; KeyCodes range from 8 to 132.

KeyCode KeySym (Keysym) ...
Value Value (Name) ...
: : :
61 0x0051 (Q)
62 0x0057 (W)
63 0x0045 (E)
64 0x0052 (R)
65 0x0054 (T)
66 0x0059 (Y)
67 0x0055 (U)
68 0x0049 (I)
69 0x004f (O)
70 0x0050 (P)
71 0x005b (bracketleft) 0x007b (braceleft)
72 0x005d (bracketright) 0x007d (braceright)
: : :

The KeyCode value in the first column is machine-specific and cannot be
changed. However, you can change the Keysym value globally (so that the key’s
function is changed in all applications) or locally.

For example, some keyboards do not include the []{} characters, which are used
widely within Xmath. On the SunOS and Solaris platforms, if you want to bind

UNIX: If xmodmap is not in your path, see your system administrator.
375

MATRIXX 7.0
Xmath User’s Guide
the [{ characters to the F1 key and the]} characters to the F2 key, go to the
command line and type:

xmodmap -e "keycode 12 = bracketleft braceleft"
xmodmap -e "keycode 13 = bracketright braceright"

This means F1 will type “[” and Shift-F1 will type “{”, etc. Note that you should
modmap to keys you do not use, rather than to alphanumeric or punctuation
keys. Also, the key code values may be different on different platforms. For
example, on the HP platform, F1 is key code 16 and F2 is key code 24.

These xmodmap settings will be lost when you log out, so if you want them to be
a standard part of your environment, save the settings to a file and call this file up
as part of your .login file.

Changing an Xmath Key Binding

To get the list of all key bindings local to Xmath, look at the default Xmath file.
There you can see that the emacs style keyboard translation settings are the
default.

Note that there are two translations: XmTextField.translations and
*XmText.translations. Text field translations are active in dialog boxes (where all
input is appended on a single line) such as the Load dialog. Text translations, (the
longer list) are active in multiline environments such as the commands window
command area and the debugger edit area. For this reason a key may have
different assignments. For example, look at the assignments for Key<Home>. In
the Text field translation it is set to beginning-of-line. In the text translation it is set
to beginning-of-file.

1. Create a file called Xmath in your home directory (this can be the same file
discussed in Table A-1, p.373).

2. Go to the operating system and use xmodmap (p.375) to identify the KeySym
name for the key you are rebinding.

3. Locate the key binding to assign to the chosen keycode.

4. To change a binding, put a line of the following form in your personal Xmath
file:

*defaultBinding:yourKeyBinding:<Key>yourKeySymName

5. Save your Xmath file and restart Xmath to see the change.
376

A

A
X Windows and Motif
A.3.2 Sizing and Placing Windows

X Windows uses a geometry option to size and place windows. The standard
geometry string is:

 width × height ± xoffset ± yoffset.

As shown in Example 9-3, there are full geometry strings for the Commands
window and the Graphics window (dimensions are specified in pixels). You can
size and place the Graphics window in one step, because it is a single window.

It takes two steps, however, to do the same for the Commands window, (which
handles text in three areas). For it, you specify the number of character columns
(the default is 80), then specify the number of rows of text you want to see in each
area. Xmath builds a window that reflects your changes. Consequently the width ×
height dimensions are unknown. This means the dimensions shown in the
example may not necessarily work on your machine, because the true dimension
of a window is affected by factors Xmath does not control, such as border width
and shadowing settings specified for your window manager. If the sizes do not
agree with what X Windows knows, it may use the defaults instead; or you may
see that the size was changed as you desired, but the window is not in the place
you want it.

To find out the true window size, restart Xmath with the new settings. When the
window appears, go to an xterm and type xwininfo.

When you get a crosshairs cursor, click on the window you need to control, and
make note of the width and height dimensions.

Note that in the sample on p.374 only the placement dimensions need to be
supplied for windows other than the Commands window; your window manager,
may, however, require a full geometry. See your X Window documentation for a
full description of this process. Edit your Xmath file so that it contains the correct
dimensions for the windows you want to move. Save your file and restart Xmath.
377

MATRIXX 7.0
Xmath User’s Guide
378

B

Xmath HP-GL Driver
Xmath supports Hewlett-Packard Graphics Language (HP-GL) hardcopy devices.
You can choose to either print to a file (that is, save the output in a file), or print to
a printer. To write an HP-GL file, go to the graphics window and select File→Save
(to print to a file) or File→Print (to print to an output device), or use the hpgl
keyword in the HARDCOPY command.

B.1 Supported Devices

All devices supporting the HP-GL language (for example, HP plotters models
HP7550A, 7470, 7475, 7580, 7585, and 7586) should be able to plot the .hp file
created by Xmath. The following plotters have been tested: HP7440A, HP7575,
and the ENCAD SP2800 plotter.

NOTE: The HPGL driver does not support hidden surfaces. For 3-dimensional
plots, you must remove the surfaces by suppressing the face keyword (!face or
face=0).
379

MATRIXX 7.0
Xmath User’s Guide
B.2 Setting the Aspect Ratio

Xmath assumes a paper size of 8.5 by 11 inches on the HP7440A, corresponding to
a plotting area of 25 by 18.1 cm. The aspect ratio of the hardcopy output might
change if you use a different plotter or paper size. You can use the Print Scale
options in the Print dialog to change the aspect ratio of the plot.

B.3 Color Pen Specifications

Xmath expects the following color pens to be in the specified stalls in the pen
carousel, as indicated in Table B-1.

Xmath attempts to map plot colors to these eight colors.

Table B-1 Color Pen Specifications

Pen Number Expected Color Pen Number Expected Color

1 black 5 red

2 blue 6 magenta

3 green 7 yellow

4 cyan 8 digitizing sight
380

C

Xmath for MATLAB Users
Xmath is a numerical problem-solving application similar to MATLAB™ and
other numerical software. While many of the constructs for storing and
manipulating data are similar to MATLAB, you will find that Xmath extends both
the amount of information stored with a given object and the number of actions a
command or function can take, depending on the type of data passed. The Xmath
work environment retains the configurable nature you are accustomed to in
MATLAB, but syntax changes have been made to make Xmath more consistent,
intuitive, and flexible.

This appendix describes changed features, explains the motivation for changes,
and in general helps smooth your transition from MATLAB to Xmath.
C.1 Syntactic Differences, p.382 describes basic changes in the punctuation and
syntax used in the software. C.2 Object Differences, p.386 describes objects that
were represented as vectors or matrices in MATLAB but are represented as full-
fledged data types in Xmath. C.3 Interpretation Differences, p.388 describes
differences that affect environment settings, data representations, and
programming issues. C.4 Comparison of Frequently Used Commands, p.398 provides
a comparison between Xmath and MATLAB of frequently used commands.
Moreover, tables illustrating equivalent expressions in MATLAB and Xmath
appear throughout this appendix.
381

MATRIXX 7.0
Xmath User’s Guide
C.1 Syntactic Differences

This section details Xmath features that have the same functionality as MATLAB
features, but are invoked in a slightly different way.

C.1.1 Continuation

If a MATLAB function cannot fit onto a single line, it can be split over multiple
lines with two adjacent periods to signal a continuation.

In Xmath, a continuation is seldom needed; if an unmatched parenthesis or brace
exists, or the line ends in a comma, Xmath assumes that the expression will
continue. Aside from this, the Xmath command area can take a line of nearly
infinite length (2^31-1). Most users break their instructions for readability rather
than necessity. Xmath uses an ellipsis (...) when an explicit continuation is
required. Because strings must be complete on a line, they are the most frequent
candidates for continuation. Table C-1 shows examples of command continuation
in MATLAB and Xmath.

C.1.2 Output Display

In MATLAB, variables are by default displayed to the MATLAB Command window
as soon as they are created; output is suppressed if a semicolon is placed at the
end of the expression that generated the variable.

Xmath’s default display mode behaves similarly. This mode can be explicitly set
with the command set display on.

Alternatively, you can specify set display off. In display-off mode, any variable
created with an expression containing an equality sign is not displayed to the
Xmath Commands window log area. For example,

A=sin(pi)

Table C-1 Command Continuation Examples

MATLAB Xmath

plot(1:10,..
'b')
title('An Easy Plot')

plot (1:10, {!grid,
title="An Easy Plot"})

plot(x,
{title="A very"+...
" long string"})
382

C

C
Xmath for MATLAB Users
does not generate any output in the commands window log area if the display is
Off. If you want to display a value as soon as it is created, place a question mark (?)
at the end of the expression. If you want to see the value of a previously-created
variable, type its name; because the name is not an expression (does not contain
an equality sign), its value is displayed. Table C-2 shows examples of output
display in MATLAB and Xmath.

C.1.3 Matrix Punctuation

Matrices are created and entered in the same basic manner, with one important
difference: all matrix elements in Xmath must be separated by commas, as shown
in Table C-3, whereas commas are optional in MATLAB.

When you specify matrix elements separated only by spaces, it is unclear whether
the element specification [1 -1] represents two separate numbers or the single
number 0 (the result of the arithmetic operation 1 - 1 = 0). Because matrix
elements in Xmath must be explicitly delineated by commas, the value of a given
element is always clear both to you and to the Xmath interpreter. You still use
semicolons and new lines to mark the end of a matrix row.

C.1.4 String Punctuation

To avoid confusion with the transpose operator, Xmath uses double quotation
marks rather than the single quotation marks used in MATLAB. Table C-4
illustrates.

Table C-2 Output Display Examples

MATLAB Xmath (set display on) Xmath (set display off) output?

A = SIN(PI); A = sin(pi); A = sin(pi) No

A = SIN(PI) A = sin(pi) A = sin(pi)? Yes

A A A Yes

Table C-3 Matrix Punctuation Examples

MATLAB Xmath

A = [1 -1 2;-4 3 12]
or
A = [1,-1,2;-4,3,12]

A = [1,-1,2;-4,3,12]
383

MATRIXX 7.0
Xmath User’s Guide
The treatment of string variables is discussed in more detail later in this appendix.

C.1.5 Logical Not

In MATLAB the operator denoting a logical not is a tilde (~); in Xmath it is an
exclamation point (!). To express an inequality relation in Xmath, use <> (the
greater-than and less-than signs); in MATLAB ~= (tilde-equality sign) denotes
inequality. Table C-5 shows the logical not operators for MATLAB and Xmath.

C.1.6 Comments

The single-line comment symbol has been changed from % in MATLAB to # in
Xmath. Unlike MATLAB, Xmath supports block comments, which are delineated
with #{ at the beginning and }# at the end. Instead of beginning each line of a
section of comments with #, you can place the #{ marker at the beginning of the
first comment line and the }# marker at the end of the last comment line. Table C-6
shows comment examples for MATLAB and Xmath.

Table C-4 String Punctuation Examples

MATLAB Xmath

str = 'This is a string' str = "This is a string"

Table C-5 Logical Not Operators

MATLAB Xmath

if ~(A > 0)
disp('A is negative')

end

if !(A > 0)
display "A is negative"

endif

A ~= B A <> B

Table C-6 Comment Examples

MATLAB Xmath

% This is a comment. # This is a comment.

% Should you feel the need
% to describe what you have
% written at greater length
% you have to comment each
% line individually in MATLAB.

#{ This is a block comment. Anything
inside the markers is interpreted as a
comment. Most programming languages
support this construct.}#
384

C

C
Xmath for MATLAB Users
C.1.7 Function Names

Xmath tends to preserve the full names of functions performing a given
operation. Where the Hessenberg-decomposition and random-value generation
functions in MATLAB are HESS() and RAND(), respectively, the Xmath
equivalents are hessenberg() and random(). These names are less cryptic and
more descriptive to the new user.

For your convenience, however, Xmath also recognizes a function called using
only the first four letters of its name, or as many more as needed to specify the
function uniquely. For example, you can call random() as rand(), but would need
to use polyn() to distinguish polynomial() from polyfit().

In addition, you can take advantage of Xmath’s alias command to alias lengthy
function names or command statements to shorter ones of your choosing. For
example:

alias sdon set display on

(See C.3.13 Useful Aliases, p.397 for a listing of aliases that you might want to have
predefined in a startup file.)

C.1.8 RAND, ONES, ZEROS, and EYE

Another syntax change concerns the matrix-building functions RAND(), ONES(),
ZEROS(), and EYE(). These functions operate in one of two ways depending on
the type of input provided. They either create a random, ones, or identity matrix
of the same size as the input, or a matrix of the dimensions specified in the input.
This causes some ambiguity when the function argument is a scalar—should the
output matrix also be a scalar, or should it be a square matrix whose dimensions
have the same value as the scalar?

When these functions are used with one argument in Xmath, the output matrix
always has the same dimensions as the input object. Table C-7 illustrates.

Table C-7 Examples With RAND

MATLAB Xmath

RAND(1) random(4) # (a 1x1 matrix)

RAND(4) random(4,4) # (a 4x4 matrix)

RAND(2,3) random(2,3) # (a 2x3 matrix)
385

MATRIXX 7.0
Xmath User’s Guide
C.1.9 IF, FOR, and WHILE

In executable files, MathScript functions, commands, the IF...END, FOR...END,
and WHILE...END loops, and conditional structures have been modified slightly.
Conditional statements starting with If in Xmath should be closed with endIf,
rather than END. (Because functions and commands are case-insensitive, any
capitalization scheme will work with these constructs.) Similarly, Xmath For and
While loops terminate with endFor and endWhile, making it much easier for a
user reading MathScript to decipher which ending statements close which loops.
Table C-8 shows examples of conditional statements in MATLAB and Xmath.

C.1.10 Pure Imaginary Number

The variable representation of the pure imaginary number (the square root of -1)
is jay in Xmath, following engineering standards, as opposed to i in MATLAB.

C.2 Object Differences

Several objects that were represented as vectors or matrices in MATLAB are
represented as full-fledged data types in Xmath.

Table C-8 Conditional Statement Examples

MATLAB Xmath

FOR variable=vector DO,
commands;

END

For variable=vector
commands

endFor

WHILE expression DO,
commands;

END

While expression
commands

endWhile

IF relation1 THEN,
commands;

ELSEIF relation2 THEN
commands

ELSE,
commands;

END

If relation1
commands

elseIf relation2
commands

else
commands

endIf
386

C

C
Xmath for MATLAB Users
C.2.1 Strings

Xmath’s real character strings can be manipulated more easily than strings
implemented in MATLAB (which are essentially vectors of ASCII values). For
example, in Xmath you can append one string to another one of any length using
the + operator. You can also create matrices where elements are all strings of
differing sizes. (This is, in fact, a handy way to create a table where text entries are
neatly aligned.)

C.2.2 Polynomials

In Xmath, polynomial coefficients and roots are stored as one of two types of
polynomial objects instead of vectors. When you create a polynomial, both the
roots and the coefficients of that polynomial are stored internally for use in future
computations for greatest efficiency and accuracy. Table C-10 gives examples of
polynomial creation in MATLAB and Xmath.

C.2.3 Dynamic Systems

Xmath stores dynamic systems as single objects containing all state-space or
numerator/denominator information, as well as any sampling rate information.
In MATLAB you need to keep track of different commands for building different
types of systems. In Xmath, everything is grouped in the system object. A brief
comparison of these representations is shown in Table C-11.

Table C-9 String Examples

MATLAB Xmath

STR='A string' str = "A string"

Table C-10 Polynomial Examples

MATLAB Xmath

% Creating a polynomial by
% listing its coefficients:
CP = [1 4 4]

Creating a polynomial by
listing its coefficients:
cp = makepoly([1,4,4])

% Creating a polynomial by
% listing its roots:
RP = POLY([-2 -2])

Creating a polynomial by
listing its roots:
rp = polynomial([-2,-2])
387

MATRIXX 7.0
Xmath User’s Guide
The system(), makepoly(), and polynomial() functions are far more flexible, and
can encompass more information, than their MATLAB equivalents. See the
MATRIXX online Help for a complete reference on these functions.

C.3 Interpretation Differences

The differences described in this section are by-products of Xmath’s more
complete user environment. In general, these are conceptual changes that involve
learning new terms rather than word-for-word syntax changes.

C.3.1 Environment Commands

Xmath has a highly customizable user environment. Many environment settings
in Xmath replace functionalities that existed as individual commands in
MATLAB. These include creating session and command diaries, changing display
format in the commands window, setting random number distribution and
generator seeds and more. In Xmath, settings are treated as parameters that are
changed with the SET command; each parameter is a keyword. Help for the SET
command describes many new capabilities not included in MATLAB. Read the
MATRIXX online Help to understand the full range of settings available. A setting
remains in its current mode until it is explicitly changed. To see the status of a
particular environmental setting, you can use SHOW. For example:

show echo #(default is off)
set echo on

The settings discussed below map closely to MATLAB capabilities you are
probably familiar with.

Table C-11 Dynamic Systems Examples

MATLAB Xmath

% For statespace systems
sys = ss(A, B, C, D);

% For transfer function
sys = tf(num, dem);

Creating a system from
matrices A, B, C, and D:
sys = system(A,B,C,D)

Same command for transfer fn
sys = system(num, dem);
388

C

C
Xmath for MATLAB Users
Creating Diaries

Once a diary file has been created, it collects input from your Xmath or MATLAB
session until it is closed. The presence or absence of a diary is thus a mode of
operation. The DIARY() function used to start a diary session in MATLAB has
been replaced with the set sessiondiary and set commanddiary syntax shown in
Table C-12.

Random Seeds and Distribution

The MATLAB RAND() function is ambiguous because it returns an output like a
standard function when called with purely numeric input, but also takes string
input and uses it to set the distribution mode and initial seed. In these cases there
is no logical function output. Xmath’s handling of these functionalities through
the SET command is more consistent, as shown in Table C-13. The Xmath
random() function always returns purely numeric output.

The default seed is 0 and the default distribution is uniform.

Number Formatting

The Xmath equivalent to the MATLAB commands SHORT, SHORT E, LONG,
LONG E, HEX, BANK, COMPACT, LOOSE and RAT is set format formatname. An

Table C-12 Creating Diaries

MATLAB Xmath

% Creating diaries
DIARY 'stamen'
DIARY off
% MATLAB can't
% keep a
% command diary

Creating diaries
set sessionDiary="sdname"
remove sessionDiary

set commandDiary = "cdname"
remove commandDiary

Table C-13 Random Seeds and Distribution Examples

MATLAB Xmath

% Setting random
% number seed
randn('SEED',100)

Setting random
number seed

set seed 100

% Setting distribution
randn('NORMAL')

Setting distribution
set distribution normal
389

MATRIXX 7.0
Xmath User’s Guide
advantage of the Xmath syntax is that it allows a wider range of formatting
options without the need to add a new command each time! Table C-14 gives an
example.

The Xmath format names are: compact (the default format), engineering, fixed,
long, longe, scientific, short, and shorte. Note that the format can also be set
interactively via the Options→Format menu option in the Commands window.

Note that fixed is slightly different in that you must set two parameters; you must
specify the format name fixed, and the precision:

set precision 4;set format fixed

The precision is the number of characters allowed. Remember that both settings
remain the same until you reset them; if you use the above settings and then set
another format, the precision will still be 4 the next time you SET format to fixed.

C.3.2 User-Defined Functions and Commands

While MATLAB allows you to define optional arguments to a user-defined
function or command, delineating them with single quotation marks, Xmath
offers related but much richer ways to extend the user input to a MathScript
function or command.

In Xmath, optional arguments and keywords are specified following the required
argument list when the function is declared.

■ Keywords must be delineated with curly braces {}. They can take any values
and be specified in any order, but the name of the keyword must always be
used so that the Xmath interpreter knows which keyword is being sent. If you
are writing your own function or command using keywords, you should
provide default values for any keywords where values are not user-supplied.
(See 3.5.1 Command and Function Calling Syntax, p.85 starting on p.85 for more
on function syntax.)

■ Optional arguments can be specified by their value or variable name alone,
and are assigned to the optional variables in the order that they are listed.

Table C-14 Number Formatting Examples

MATLAB Xmath

% Set number format
long
% or
format long

Set number format
set format long
390

C

C
Xmath for MATLAB Users
When a function is called with optional arguments, they are listed directly
after the required arguments and are not enclosed in curly braces.

In both MATLAB and Xmath, you can define functions and commands that
override existing functions and commands, including intrinsic ones. In Xmath,
you can place the function or command in the search path or use the DEFINE
command to determine which one you want to use (see 6.1.7 Using User-Defined
MSFs and MSCs, p.230); in MATLAB, a user-defined function has priority over a
function supplied by MATLAB.

C.3.3 plot()

In Xmath, plot() is a function that returns an output variable (a graphics object, as
discussed in 4.2 Using the plot() Function, p.108). This variable can be
subsequently replotted to regenerate a plot, kept to form a background or
template for subsequent plots, and augmented via interactive changes to the
graphics.

MATLAB option strings are replaced in Xmath by plot() keywords. Referring to
the online Help will give you a good idea of the scope of plot() parameters that
you can set in Xmath, but Table C-15 illustrates briefly.

C.3.4 Transpose Operators

The transpose operator is interpreted differently in Xmath. MATLAB offers only
one transpose operator, the apostrophe ('). When used with a complex matrix, the
transpose operator performs a Hermitian, or complex-conjugate transpose.

Xmath offers two transpose operators:

■ The Xmath apostrophe operator (') performs a regular transpose, leaving
complex values untouched.

■ The Xmath complex-conjugate transpose operator is the asterisk-apostrophe
(*').

For purely real matrices these two transpose operators perform the same function.

Table C-15 Plot Examples

MATLAB Xmath

PLOT(1:10, 'b') plot(1:10,{line_color=4}) # or
plot(1:10,{line_color="Blue"})
391

MATRIXX 7.0
Xmath User’s Guide
Table C-16 illustrates Xmath and MATLAB equivalents.

C.3.5 Convolve

The CONV() function, which performs polynomial and vector convolution in
MATLAB, has been replaced by the convolve() function and the * operator in
Xmath. convolve() is equivalent to CONV() when used on two vectors or two
polynomial objects; however, the * operator performs exactly the same operation
on polynomials as convolve() does and is easier to use.

C.3.6 Series and Parallel

The MATLAB functions SERIES() and PARALLEL() have been replaced by the
Xmath operators * and + respectively, when these operators are used with
dynamic systems. You will find the online Help and Using Operators with Dynamic
Systems on p.210 useful for a quick but thorough overview of the extended role
operators play in Xmath.

C.3.7 Simulation

The MATLAB continuous- and discrete-time simulation primitives LSIM and
DLSIM have been replaced with the system*PDM construct. (The parameter-
dependent matrix [PDM] is a highly useful data type unique to Xmath. It allows
you to store multiple sets of matrix information (input values) that are dependent
on a parameter [time]. For a complete explanation of PDMs, see 5.4 Parameter-
Dependent Matrix (PDM), p.187.) This construction finds the system response to
the input values contained at each point in the PDM. The syntax inherits from
terminology frequently used in the linear systems field: Y = H*U, where U
represents system input, H represents the mathematical model of the system’s
dynamics, and Y is the output of the system. This is a brief description; for more
information, see 5.5.5 Time Response, p.214.

Table C-16 Transpose Operator Examples

MATLAB Xmath

A = [1+i 1+2*i;
3-6*i 2+9*i]

A'

A = [1+jay,1+2*jay;
3-6*jay,2+9*jay]

A*'

CONJ(A') A'
392

C

C
Xmath for MATLAB Users
Note that where MATLAB generally offers two separate functions for discrete-
and continuous-time system representations, Xmath only offers one. This is
because sampling-rate information (which is by default zero, thus describing a
continuous system) is stored with the system object itself. For example, the Xmath
function bode(), which encompasses all the functionality of the MATLAB
functions BODE() and DBODE(), automatically checks whether your system is
continuous or discrete and then performs the appropriate operations in either
case. You can write similarly flexible MathScript functions.

C.3.8 Eval (Executable Strings)

Xmath offers a facility (similar to the MATLAB EVAL() function) that allows you
to create strings containing valid Xmath commands and then execute the contents
of the strings. It can be used for creating macros or customizing functions. You can
create strings directly or append them using the + operator, then use Xmath’s
EXECUTE command. The only constraint is that the string must form a complete
Xmath statement by itself and be terminated by a semicolon or question mark to
indicate its end. Table C-17 illustrates.

As mentioned in C.1.4 String Punctuation, p.383, MATLAB does not allow string
concatenation. In Xmath, the + operator is overloaded to perform string
concatenation. In addition, numbers can be converted to strings using the string()
function.

C.3.9 Executable Files

Executable files (often referred to as script files in Xmath) function similar to
script.m files in MATLAB. A small change is that the names of these files must
terminate with the extension .ms in Xmath. The syntax to execute files is slightly
different as well, as shown in Table C-18, for an executable file called testexec.ms
in Xmath and testexec.m in MATLAB.

Table C-17 Executable String Examples

MATLAB Xmath

x = pi
s = 'y = sin(x);'
eval(s)

x = pi;
s = "y = sin(x)?"
execute s
393

MATRIXX 7.0
Xmath User’s Guide
C.3.10 Finding Files

Xmath has the ability to use files that are not in the working directory. It does this
in a more flexible manner than that employed in MATLAB. In MATLAB, the
MATLABPATH environment symbol defining the accessible directories is
generally set up before you start your MATLAB session. The MATLABPATH
could be changed during a session using the MATLABPATH command, but it had
to be completely changed at once. In Xmath you can alter the directory search
path at any time during your Xmath session, and you can add or remove paths
separately, without having to redefine the entire path each time a modification is
desired.

SET path is used to specify a list of directories that Xmath will automatically
search to find MathScript functions and commands (MSFs and MSCs). You can
use the corresponding REMOVE path command to remove paths you no longer
want or need.

If you write an MSF in one of the directories in the path, you can call it
immediately from within Xmath. When you call a function you have written,
Xmath searches your current directory and all the directories in your path until it
finds a function file where name matches the function you called. Upon finding
the file, Xmath compiles it to a low-level operational code and it runs
immediately. If a function or command file is not in a directory listed as one of
your path directories, you need to define it explicitly and specify the directory
where it resides.

Table C-19 compares these facilities in Xmath and MATLAB (the operating system
commands shown are for a version of MATLAB running under a UNIX operating
system).

Table C-18 Executable Filename Examples

MATLAB Xmath

TESTEXEC execute file="testexec"

Table C-19 Examples of Finding Files

MATLAB Xmath

!pwd show directory

!cd /home/new set directory = "/home/new"

!echo $MATLABPATH % or
matlabpath

show path
394

C

C
Xmath for MATLAB Users
In MATLAB, the exclamation-point notation (!) can be used to send out an
operating-system command and display its output. Xmath offers an analogous
oscmd function, as shown in Table C-20.

C.3.11 Debugging Files (on UNIX systems)

MATLAB’s debugging facility consists primarily of keyboard commands. Xmath
provides an interactive debugger for MathScript files. It can be used in either of
two modes:

■ The Xmath debugger is automatically invoked when you try to run a function
containing a syntax error. The offending statement is highlighted. You can fix
the mistake, save the file, and rerun the function, all from the debugger
window.

■ The second debugging mode is useful when you have written a function and
want to halt execution at some point to examine variable values. To do this,
type debug functionName in the Xmath Commands window. The debugger will
then appear when you call the function, allowing you to step through any
portion of the MSF one statement at the time, or to set breakpoints and jump
to them. You can use the Commands window to look at local variable values or
evaluate expressions.

For more on the debugger window, see 6.4 Using the Xmath Debugger, p.245.

C.3.12 Save and Load

The commands for saving and loading data also differ somewhat. MATLAB offers
flags that enable you to save data in either a MATLAB-written binary format or a
short or long ASCII format. Xmath’s SAVE command has a number of keywords

matlabpath("~me/myfuns") set path = "~me/myfuns"

(no analogous feature) remove path 2

Table C-19 Examples of Finding Files (Continued)

MATLAB Xmath

Table C-20 Operating System Command Examples

MATLAB Xmath

!ls -l oscmd("ls -l")
395

MATRIXX 7.0
Xmath User’s Guide
associated with it to determine what type of format to use to save the data.
Xmath’s LOAD command can be used to load in data saved by Xmath or
MATRIXX (FSAVE-format data). Table C-21 compares the commands.

In Xmath, as in MATLAB, if a list of variables to be saved or loaded is omitted, all
variables are saved or loaded. Xmath data files terminate with the suffix .xmd
(MATLAB uses the .mat suffix). MATLAB always loads all the data stored in a
.mat file; Xmath can load either all or part of the data stored in a .xmd file.

Xmath’s load command cannot directly load MATLAB data; however, as
described in Chapter 8, you can create a linked executable (LNX) that can.
$XMATH/src/matload.c is a sample LNX that loads MATRIXX 3.X format (which is
similar to older MATLAB formats) into Xmath data objects. This file is
commented to assist you in making any changes. To make a local copy of
matload.c in the Xmath log area and create a local copy, go to the command area
and type:

copyfile "$XMATH/src/matload.c"

Loading In External Data (read)

Loading in data generated by external programs other than Xmath, MATRIXX,
and MATLAB is also possible. If you have data written to a non-Xmath file by
another program and you know the size and type of the data in the file, you can
use the read() function to read from the data file into an Xmath matrix variable.
The input arguments you pass to read() describe how large the matrix should be,
the format of the data in the external file, and how many bytes of data (if any) you
choose to skip before reading data into the target variable. This allows you to
create data files that are easily readable by a variety of programs, not necessarily
just Xmath. This function is described in more detail in the Xmath online Help,

Table C-21 Save and Load Examples

MATLAB Xmath

SAVE 'filename' VAR1 VAR2... save var1 var2...
file = "filename" {keyword}
The keyword is optional and
may be set for binary, ASCII,
or MATRIXx formatted saves

LOAD 'filename' load "filename"

No equivalent feature load a b "filename"
396

C

C
Xmath for MATLAB Users
and the $XMATH/demos directory contains sample files that you can use to test
read().

Writing Data to an External File (print, fprintf)

In addition to the Xmath-formatted SAVE command, Xmath provides two other
functions that are useful for writing data to external files: print() and fprintf().

print() writes any Xmath data object to an external file you specify. The data is
written exactly as it appears when displayed in the Commands window log area.

fprintf() converts scalar numeric values to a string representation, then writes
them to the file you specify. A wide range of format specifiers (identical to the
ones used for the C-language fprintf() function) can be used to specify field
width, zero-padding, tabs, and new lines, among other formatting options.

C.3.13 Useful Aliases

You may want to define the following aliases in a startup.ms file so that you can
use familiar names for the following Xmath commands. Some examples follow.

The MATLAB function names lyap() and conv() invoke their Xmath counterparts
lyapunov() and convolve(), but the Xmath functions have a different set or order
of inputs. Along these lines, Xmath has both a rootlocus() and rlocus() function.
rlocus() is the one analogous to MATLAB rootlocus(). To create an alias enter the
following:

Xmath versions do not necessarily take exactly the same inputs in exactly the
same order as their MATLAB namesakes. When in doubt, refer to the Xmath
online Help.

You are, of course, not limited to these aliases. Xmath commands and functions
tend to be as descriptive as possible without being excessively long. As you
acquire expertise with Xmath, you will probably want to alias other frequently

alias clear delete

alias ss2tf numden

alias tf2ss abcd

alias rlocus rootlocus
397

MATRIXX 7.0
Xmath User’s Guide
used commands as well. To obtain a list of all the aliases currently set up in an
Xmath session, just type alias on a line by itself in the command area.

Note that aliases can cause some problems; for example, if you have clear defined
as an alias for delete, you will not be able to use clear as a keyword in a function.
We recommend that you use aliases to speed your transition from MATLAB to
Xmath, and then learn the Xmath syntax as you go along.

C.4 Comparison of Frequently Used Commands

Table C-22 summarizes some of the most frequently used Xmath and
corresponding MATLAB commands. Both Xmath and MATLAB commands are
case insensitive.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands

Xmath Command
or Operator

MATLAB Command
or Operator

Description

cond(A) cond(A) Finds the condition number.

convolve or * conv Performs polynomial and vector
convolution.

cos(x) cos(x) Calculates the trigonometric cos
function.

bode bode or dbode The Xmath function bode checks
whether your system is continuous or
discrete and then performs the
appropriate operation.

det(A) det(A) Finds the determinant.

eig(A) eig(A) Computes eigenvalues and
eigenvectors for real and complex
square matrices.

execute eval Xmath and MATLAB versions
perform similar functions (see
3.9 MathScript Batch Files, p.97).
398

C

C
Xmath for MATLAB Users
execute file file.m Executable files are similar (see
3.9 MathScript Batch Files, p.97).

NOTE: In MATLAB, execution of a
script can be done directly
from the script’s name. In
Xmath, execution must be
done with the execute()
function. (This prevents
ambiguous code or
accidental execution.)

exp(x) exp(x) Computes the exponent of (x).

NOTE: For matrix exponentiation,
MATLAB requires the format
expm(A).

eye(A) eye(A) Generates the identity matrix.

GuiPlotGet ginput Get the current pointer selection and
coordinates.

hessenberg hess Converts a matrix to Hessenberg
form.

hilbert(n) hilb(n) Creates a Hilbert ill-conditioned
matrix.

hilberttransform No MATLAB
equivalent

{Apparently this command is
available but not documented.}

inv(A) inv(A) Finds the inverse matrix.

load load Xmath and MATLAB versions
perform similar functions (see
3.7 Saving and Loading Data, p.88).

log(x) log(x) Computes natural logarithm.

makepoly No corresponding
command

Create a polynomial from its
coefficients. MATLAB reformats
polynomials by using the
corresponding vector with its
coefficients.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description
399

MATRIXX 7.0
Xmath User’s Guide
norm norm Calculates the norm of a vector,
matrix, or PDM (Xmath only).

No corresponding
command?

null The NULL(A) command in MATLAB
calculates an orthonormal basis for
the null space of A.

ones ones Xmath and MATLAB have some
minor syntactical differences (see
MATRIXX online Help).

ortho orth Used as ortho(A) to give the
orthonormal basis for A.

pinv pinv Used as pinv(A) to give the
pseudoinverse for A.

plot(0:10) plot(0:10) The basic plot command is the same,
but the keyword syntax is different.

polyfit polyfit Both commands fit a polynomial, but
the Xmath command uses a PDM as
input. (PDMs are not supported in
MATLAB.)

polynomial poly Create a polynomial from its roots.

polyval polyval Evaluates a polynomial.

No corresponding
command

quad8
quad -dblquad

Estimates an integral numerically.

random rand Generates random numbers or
matrices.

residue(sys) residue(b,a) Expands a partial fraction.

roots(p) roots(p) Returns the roots of a polynomial.

round round Round matrix values to the nearest
integer.

rref rref Transforms a matrix into reduced
echelon form.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description
400

C

C
Xmath for MATLAB Users
save save Xmath and MATLAB versions
perform similar functions (see
3.7 Saving and Loading Data, p.88).

schur schur Calculates the Schur factorization.

set format name format name

short, short e, long,
long e, hex, bank,
compact, loose, rat

Xmath format names are compact
(the default), engineering, fixed,
long, longe, scientific, short, and
shorte.

set seed num rand('seed', num) Setting the random number seed. For
MATLAB 5, rand('State), j) gives the
jth state. rand('State', s) makes the
actual state equal to s (state = s).

sin(x) sin(x) Calculates the trigonometric sin()
function.

sqrt(x) sqrt(x) Calculates the square root of x.

zeros zeros Generates a matrix of zeros.

./,.*,/,.*, ... Point preceding operator means
elementwise operation.

' and *' .' and ' Transpose operators. The operators on
the left (' and .') are for regular
transpose and The operators on the
right are for complex-conjugate
transpose.

+ parallel The overloaded Xmath + operator
performs the same function as the
MATLAB parallel() function.

* series The overloaded Xmath * operator
performs the same function as the
MATLAB series() function.

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description
401

MATRIXX 7.0
Xmath User’s Guide
... #
or
#
#
.
.
.

% Indicates a comment. MATRIXX
supports block comments that span
multiple lines. The second # is only
needed for a multiple-line comment.

"string" 'string' MATRIXX uses double quotes to avoid
confusion with the transpose operator.

A <> B A~=B Logical NOT EQUAL operators.

!A ~A Logical NOT operators.

x = A\b x = A\b Computes the least squares
approximation
(Ax = b).

Table C-22 Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description
402

D

Xmath to Mathematica

Interface
This appendix describes how to set up and use the Xmath to Mathematica
Interface.

D.1 Overview

Mathematica is a powerful symbolic manipulation program from Wolfram
Research, Inc. (WRI). It performs operations such as differentiation and
integration symbolically, achieving exact general solutions to many problems.
This capability can be coupled with Xmath’s powerful numerical analysis and
design capabilities, resulting in a very strong joint analysis tool.

Xmath was developed with an open architecture, which simplifies
communication with other programs and processes. The interface between Xmath
and Mathematica is based on Xmath’s LNX (link external) capability and
Mathematica’s Mathlink facility. When Mathematica is first invoked from Xmath,
Mathematica’s Mathlink facility establishes a process running Mathematica, and
maintains a link to that process for all subsequent calls from the same Xmath
session, allowing Xmath the use of intermediate variables in Mathematica.
Furthermore, the Mathlink facility allows Mathematica to be invoked on a
different computer than the Xmath host; this is completely transparent to the user.

When a valid Mathematica command is entered in the Commands window
command area, a separate Mathematica process computes the answer (commands
that produce graphics should never be used). The resulting text output that
403

MATRIXX 7.0
Xmath User’s Guide
would normally appear in Mathematica is converted to an Xmath string object
that is displayed in the Commands window log area. If the answer is a numeric
matrix, it can be passed directly to Xmath. Matrices can also be passed from
Xmath to Mathematica. All Mathematica warnings and other messages are
transmitted to Xmath and displayed in the Commands window message area.

For a more detailed explanation of the LNX process, see Chapter 8. The source for
the Xmath to Mathematica interface can be found in $XMATH/src/mathlink.c.

D.2 Setup

These instructions apply to setting up Xmath, and the Xmath to Mathematica
interface on an Xmath host. If you encounter problems related to Mathematica
functionality, contact Wolfram Research, Inc. Their website is http://www.wri.com,
their e-mail address is support@wolframi.com, and their Technical Support phone
number in the USA is 217-398-6500.

To use the Xmath to Mathematica interface the following conditions must be met.

■ Mathematica must be installed and accessible to you, the Xmath user. The
Mathematica version must be 3.0 or higher.

■ Only UNIX versions of Xmath and Mathematica are supported.

■ Your UNIX execution path must include the path to your Mathematica
installation directory. For example,

set path = ($path /home/Mathematica/Executables/SPARC)

where the above path points to the Mathematica installation at your site.

Because the Mathematica interface LNX must be linked with the local Mathlink
libraries on your target system, Integrated Systems cannot deliver an executable
interface. However, we have provided all of the necessary routines to quickly
create an executable interface LNX.

To allow all users access to the Xmath to Mathematica interface, a system
administrator must perform the steps in D.2.1 Setting Up the Xmath to Mathematica
Interface for All Users, p.405. Users who do not have system privileges can perform
the steps in Creating a Local LNX (Single User) to create a local LNX.
404

D

D
Xmath to Mathematica Interface
D.2.1 Setting Up the Xmath to Mathematica Interface for All Users

These instructions assume the $ISIHOME environment variable was properly set
at installation time to the path to the root MATRIXX Product Family installation.

1. Change directory to $ISIHOME/platform/xmath/src.

2. Edit the mma.mk file as follows:

a. Define the XMATH variable to be $(ISIHOME)/platform/xmath.

b. Replace PATH_TO_libML.a with the path to the Mathlink libraries (for
example:

 */Mathematica/AddOns/MathLink/DevKits/SPARC/CompilerAddOns

3. To create mmalnx.lnx, run the makefile as follows:

make -f mma.mk

4. Copy mmalnx.lnx to $ISIHOME/platform/xmath/modules/mathematica.

All Xmath users will now be able to use the Xmath to Mathematica interface.

D.2.2 Creating a Local LNX (Single User)

Although it is preferable to have a system administrator set up the Xmath to
Mathematica interface, a user with no root privileges can set up an LNX for his
personal use. To use the Mathematica interface without modifying the Xmath
source directories, the user can copy $ISIHOME/platform/xmath/src/mma.mk and
mathlink.c to a local directory, and then perform steps 2 and 3 described in
D.2.1 Setting Up the Xmath to Mathematica Interface for All Users, p.405. However,
before using the interface, the user must tell Xmath not to look in the modules
directory for the LNX. To do this type the following Xmath commands in the
Xmath Commands window command area:

undefine mma
define mma {directory="path_to_lnx"}

For future usability, these lines can be placed in your personal Xmath startup.ms
file, along with a set path command that points to the location of your local
mmalnx.lnx file (so that if you start Xmath from another directory you will still be
able to use the LNX). For example:

set path="path_to_lnx"
405

MATRIXX 7.0
Xmath User’s Guide
See 3.9.3 startup.ms (on UNIX systems), p.98 for more on startup.ms, and Search
Paths on p.231.

D.3 Syntax

Xmath provides three functions, which perform the following tasks:

1. Send a command to Mathematica (a Mathematica session is started if one
does not exist):

mma("valid_Mathematica_cmd")

mma is actually an accepted abbreviation for mmaexecute.

2. Transfer a matrix from Xmath to Mathematica:

mmaput("mma_matrix_name", xmath_matrix_name)

3. Transfer a matrix from Mathematica to Xmath:

xmath_matrix_name = mmaget("mma_matrix_name")

Note that you can assign the output of a Mathematica command to a
Mathematica variable and an Xmath variable in one step:

xmath_var = mmaget("var=Mathematica_numerics_cmd")

4. Close the Mathematica session:

mma("quit")

The lowercase string "quit" causes the LNX to close the Mathematica process.
However, the LNX stays resident and active. If you issue another
Mathematica command, the existing LNX will restart Mathematica. When
you exit Xmath, the LNX will be killed.
406

D

D
Xmath to Mathematica Interface
D.3.1 Passing Xmath Data to Mathematica

You can pass scalars, vectors, or matrices from Xmath to Mathematica. These
forms all qualify as matrix objects in Xmath.

Mathematica assumes all incoming values are matrices and places them in nested
Lists. For example, the Xmath matrix [1,2;3,4] is represented as {{1,2},{3,4}} when
passed to Mathematica, and the Xmath scalar 7.2 is represented as {{7.2}}.

Xmath vectors should always be passed to Mathematica as row vectors. (If a
column vector is passed, the resulting nested list will not be as readily useful.)
After a row vector is passed to Mathematica, it can be extracted from a nested List
to a single List using x=x[[1]]. Scalars can be extracted from a nested List to a true
scalar using s=s[[1,1]].

D.3.2 Passing Mathematica Data to Xmath

Lists or nested Lists can be passed to Xmath from Mathematica. The Lists can only
contain numerical data, never symbolic data. In the case of nested Lists, the
component List lengths must be equal so that Xmath can convert the List to a
matrix.

A Mathematica symbolic matrix can be converted to a numerical equivalent using
the command x=N[x], and the result can then be passed to Xmath. For example,

mma("x = Table[EllipticK[i], {i, 0, 2/3, 1/6}]")
x=mmaget("N[x]")

To pass a scalar to Xmath it must first be placed in a List of length one. This can be
done using the command a={a}.

D.4 Examples

The following Xmath inputs and Mathematica responses demonstrate how data is
passed between the applications.

When we ask for the Mathematica version, Xmath receives a string:

mma("$Version")
407

MATRIXX 7.0
Xmath User’s Guide
ans (a string) = SPARC 3.0 (April 26, 1997)

The following call to Mathematica asks for a numeric result with a precision of 40.

str=mma("N[EulerGamma,40]")

str (a string) = 0.5772156649015328606065120900824024310422

We can convert this simple string to a number in Xmath and compare the
displays. First, we set the format to longe, the longest output Xmath can display.
Then we can convert the string to a scalar with makematrix:

set format longe
s=makem(str)

s (a scalar) = 5.772156649015329e-01

Symbolic output (strings containing superscripts or a mixture of text and
numbers) can be viewed in the Xmath Commands Window log area, but not used as
Xmath inputs:

mma("Integrate[x^2 Sin[x]^2,x]")

ans (a string) =
3 2

4 x - 6 x Cos[2 x] + 3 Sin[2 x] - 6 x Sin[2 x]
--
 24

Create a matrix in Xmath and send it to Mathematica:

set format compact
m=[pi,42,0;7,tiny,6;17,huge,.02]

m (a square matrix) =

3.14159 42 0
7 2.22507e-308 6
17 1.79769e+308 0.02

mmaput("m",m)

You can use Mathematica functions to manipulate the matrix and pass numeric
versions of the matrix manipulations back to Xmath:

mRev=mmaget("mRev=N[Reverse[m],9]");
mRot=mmaget("mRot=N[RotateLeft[m,2],9]");
408

D

D
Xmath to Mathematica Interface
Display the matrices (in compact form):

mRev?

17 Inf 0.02
 7 2.22507e-308 6
 3.14159 42 0

mRot?

mRot (a square matrix) =

 3.14159 42 0
17 Inf 0.02
 7 2.22507e-308 6

For more examples, execute the files $XMATH/demos/mathematica/mma.ms and
$XMATH/demos/mathematica/elliptic.ms.
409

MATRIXX 7.0
Xmath User’s Guide
410

Index
Symbols
- 93
– 94
! 91, 93, 94, 107
% 97
& 91, 93, 94
* 93, 94, 97
** 93, 94
*’ 93, 94
+ 93, 94
+ operator 72
, 191
.* 93, 94
.** 93, 94
.*. 93, 94
... 103
./ 93, 94
./. 93, 94
.\ 93
.^ 93
. 93, 94
/ 93, 94
: (variable arguments) 272
: in regular vector specifier 73
: index operator 94
; 102, 113
< 91, 93, 94
<= 91, 94

<> 91, 94, 284
= 94
== 91, 94
=== 278
> 91, 93, 94
>= 91, 94
? 113, 117
@, @str, @int, @:l, @str:l, @str:p,@@, @@:p 44
[] 72, 73, 94
\ 93
^ 93
103
#{ }# 103
() 94
{ } 94, 106
| 91, 93, 94
’ 73, 93, 94

A
abcd 233
abort Xmath (Ctrl-\, UNIX) 30
advanced topics 272
alias 106, 116
AllocateList 302
AllocateMatrix 298
AllocateNull 303
AllocateStringMatrix 299
411

MATRIXX 7.0
Xmath User’s Guide
ans 50, 99
apostrophe operator (”) 391
argn 272
argv 272
arrays, C vs. FORTRAN 328
ascii 236
assignment statement 89
asterisk-apostrophe (*”) 391
autocompile 113
axes 148

B
background LNX 294, 324

function assignment syntax 276
terminating 327

batch file 117
creating 120
running 120

beep 263
behavior

GUI objects 345
binary operators 92
breakpoint

remove 269
set 266, 268
show 269

breakpoints 268
button

radio 345
toggle 345

C
C language

arrays vs. FORTRAN 328
LNX function file format 295, 296
resident functions 331

cascade menu 345
channels 214, 225, 226
char 236
check 233, 259

class
hierarchy 188
variables 282

computed 282
optional 282
required 282

clear
logarea 38

click 174, 367
client 366
colon (:)

in regular vector specifier 73
index operator 94, 194, 195, 272

color map 137
current 137
using your own 138

colorind function 126
column vector 73, 196
comma (,) 191
command

area 38, 49
editing text 40
recall 43

declaration 245
diary 121
intrinsic 58, 105
syntax rules 105, 106
using 58

Commands window 35
comment 50, 97

add via dialog 100
partition 97
variable 97

commentof 97
comments 50

multiple lines (#{ }#) 103
single lines (#) 103

comparator 92
complex

conjugate transpose (’*) 93
matrix 190
number 190

concatenate 191, 235, 239
concatenation

lists 239
412

IX

Index
matrix 191
PDM 221
strings 235

connection
parallel 231
series 231

continuing Xmath command lines 103
contour plot 168
convert using check 233
copy 62
copying and pasting text

in Motif 371
within Xmath 371

Ctrl-\ 30
Ctrl-Break 30
Ctrl-c 30
cursor 370

D
data structure

et_list 302
et_matrix 297
et_null 303
et_pdm 299, 300
et_string 298

data type
list 302
matrix 297
null 303
PDM 299
string 298

dbx 330
debug 266

off 269, 270
set 268

debugger window 86, 265
debugging mode 266
setting breakpoints 268
setting watchpoints 269

debugging an LNX 330
declaration line 244, 245, 247
default values 248
DEFINE 252

#define 306
defTimeRange 234
DeleteAny 303
DeleteList 302
DeleteMatrix 298
DeleteNull 303
DeletePDM 302
DeleteString 299
delsubstr 237
demo

debugger 87
graphics 70
guidemo 88
leadlag 341

diagonal 199
diagonal matrix 199
dialog 346

modal 346
diary 122

command 121
session 122

directory
pathnames, specifying in Xmath Command

area 38
set 28, 108
show 108

directory 276
discretize 233
DISPLAY 236
display environment variable 113
distribution, random 114
domain 81, 207, 209
domain 218
double-click 367
drag 174, 367
dynamic system 227, 387

indexing 231
operators 230
size 230
state-space form 227, 228
transfer function form 228
413

MATRIXX 7.0
Xmath User’s Guide
E
echo

set 121
show 118

editing text in Xmath 40
ellipsis 103, 382
environment variable

expanding in script files 115
set 112
XMATH_PRINT 118, 119

eps 98
ERASE 127, 171
erase

logarea 38
err (permanent variable) 98
error

codes 335
handling, LNX 304, 307

error 260, 263
et_list 302
et_matrix 297
et_null 303
et_pdm 299
et_string 298
EVAL 393
executable string 117
execute 117, 122
exist 258
exponentiation 93
expression 90
extended-selection list 345
eye 199, 385

F
face_color 159
face_style 159
fg_color 158
file selection dialog 39, 372
filenames, specifying in Xmath Command area 38
find 75, 264
find variable 101
fonts 152

for 104, 256, 386
format, numerical display 114
FORTRAN 328
FORTRAN LNX 327
fprintf 111
ftnlnx 329
functions

intrinsic 105
MIMO 107
nonresident 332
resident 331
syntax rules 105
using 57
void 248, 249

G
G <MCurrPage `327> 341
general simulation 84
get 115

path 116
getchoice 261
getline 261
goto 258
graph object 130

bind to variable 131, 179
graphical user interface. See GUI
Graphics window 60
graphics window 123, 171

colors 138
grids 150
grip 34
GUI

Help menus 342
objects 345
tools

developing your own 342
using 341

guidemo 88
414

IX

Index
H
HARDCOPY 127
hardcopy (graphics) 180
HARDCOPY command 181
Help

messages 346
window 45
xmath

Windows 30
help

xmath
UNIX 29

hessenberg 200
Hessenberg matrix 200
history. See recall
huge 98

I
icon bar 175
iconify 368
identity matrix 199
if 104, 257, 386
improper transfer function 228
impulse 234
independent parameter 209
index

list 194, 238, 239, 264
operator 288

index 237, 264
indexing

dynamic systems 231
functions 264
matrices 74, 193
PDMs 83

Inf 98
initial 234
initializer function 280
input names, extracting 233
interrupt

Ctrl-Break 30
Ctrl-c 30

intrinsic functions 105

ISIHOME 25

J
Jay 98, 386

K
keep 62
key bindings

changing 43
default 41

keyboard, remapping 375
keywords 106, 131

assigning default values 248
Kronecker product 93

L
label 258
leadlag demo 341
length 235
licenseinfo 32
line

feed 40, 49, 190
styles 140
widths 140

list 345
extended-selection 345
multiple-selection 345
object 84, 238
single-selection 345

list 238
LNX

background
function assignment syntax 276
mode 294, 324

terminating 327
windows client, communicating with 335

building and calling 316
C function format 295, 296
415

MATRIXX 7.0
Xmath User’s Guide
data type. See data type
debugging with dbx 330, 332
definition 293
FORTRAN 327, 328
function

communicating with Xmath 304
sample 314, 321

functions 303
AllocateList 302
AllocateMatrix 298
AllocateNull 303
AllocateStringMatrix 299
DeleteAny 303
DeleteList 302
DeleteMatrix 298
DeleteNull 303
DeletePDM 302
DeleteString 299
WrapMatrix 298
WrapPDM 302
WrapString 299
WrapStringMatrix 299
XmathIPCgetc 336
XmathIPCgeti 336
XmathIPCgets 336
XmathLoad 312
XmathSave 311, 312

handling aborted 334
include file, required 297
interfacing Xmath with Mathematica 403,

405–406
limitations on passing variables 292
loading MATLAB data 396
makefile 316
nonresident functions 332
program, sample 294, 325
prototype 295, 296
resident functions 331
speeding execution for MSOs 289
string data type, converting to 299
UCI comparison 293
undefining 320
user function structure 294, 296
USR1 signal handler 330
utility 294

version compatibility 297
load 32, 109, 395
log area 37

clear 38
logical 91
logspaced vector 73, 197
loop 104

for 104, 256
if 104
if 257
while 104, 256, 257

lower triangular matrix 201

M
makecontinuous 233
makefile 316, 319

for an LNX program 316, 319
template 316, 319

makematrix 222, 236
converts strings to numbers 261

makepoly 76, 205
markers 141
Mathematica to Xmath Interface 403
MathScript 85, 89

files 117
batch 117
execute 117
format 246

function. See MSF
object. See MSO
programming 248
punctuation 102
scoping rules 249
search paths 251

MATLAB
data

using LNX to load 396
to Xmath translator

aliases 397
syntax difference 382

matload.c 396
matrix 190

building 72
416

IX

Index
brackets 190
commas 190
line feed 190
semicolons 190

concatenation 191
data type 297
diagonal 199
Hessenberg 200
identity 199
indexing 74, 193
operators 191, 192
punctuation 190
square 197
string 71
symmetric 198
Toeplitz 200
triangular 201

MATRIXX
block diagram 343, 344, 346

MATRIXX online Help 24
menu

bar 34
cascade 345
pulldown 345
selection from keyboard 371

message area 44
Meta key 35
MIMO, definition and representation 78
mma 406
mmaget 406
mmaput 406
modal dialog 346
mouse

click 367
double-click 367
drag 367
instructions 367
press, push 367
selecting text

by clicking 41, 371
by dragging 41, 371

move 157
graphic objects 174
window 369, 370

MSC 244

building 246
command declaration 245
example 255
file format (figure) 247
inputs 244
inputs (syntax) 245
scoping rules 249
user-interface functions 260
variable arguments 272

MSF 243, 244
building 246
calling syntax 105
file format (figure) 246
function declaration 244
Help 244
inputs 244
optional block comment 244
scoping rules 249
user-interface functions 260
variable arguments 272

MSO 279
defining 281
index operators 287
initializer function 282
member entities 292
object instantiation 280
operator overloading 285
scoping (nested objects) 283
speeding execution with LNXs 289
type declaration 284

multiple-selection list 345

N
names 218, 233
names, specifying directory pathnames and

filenames 38
naming rules 90
NaN 98
negation operator (!) 107
new partition 95
nomenclature 23
nonresident 305
null 98
417

MATRIXX 7.0
Xmath User’s Guide
numden 233

O
ones 385
operators 92

and PDMs 223
indexing 74
matrix 192
precedence 94
with dynamic systems 230
with polynomials 76

optional arguments, assigning default values 248
oscmd 55, 108

expanding path names 116
output

keywords 248
names, extracting 233

P
PARALLEL 392
parallel connection 231
parameter–dependent matrix. See PDM
parentheses 194
partition 95, 97

changing via variables window 100
delete 53, 96
handling 52
lock 101
name 90
new 52
set 52, 114
show 53, 95
size 100
viewing variables 53, 100

partition, definition 51
pasting selected text in Motif 371
path 251

adding (set path) 251
overriding (define) 252
removing (remove path) 251

set 251
specifying 38
viewing (show path) 251

path name
expanding in script files 115

pathnames 115
pause 262
PDM 207

allocate for LNX or UCI 300
channel 214, 225
concatenation 221
convert to matrix 222
creating 210, 211
dimensions 215
domain 209

extracting 218
independent parameter 209
indexing 215, 218

substitution 220
modifying 220
names 209, 218

extracting 218
operators 223
using with functions 225

pdm 210
PDM, definition 81
pdmplot function 127
period 233
permanent variables 98
pi 98
plot 347

and mouse buttons 347
plot 58, 59, 123, 124, 128, 131

complex data 128
copy 145
datestamp 182
drawing tools 176
edit graphics window 181
font sizes 182
icon bar 182
interactive tools 175
keep 145
timestamp 181
toolbar 175
zoom 177
418

IX

Index
plot keywords
animate 155
axes 148
axisfix 148
bg_color 158
colors 137
contour 168
defaults 132
edge 159
face 158
face_color 159
face_style 159
fg_color 158
grid 150
hold 161
increments 150
keep 146
keepsubplot 146
labels 135
legend 136, 182
light 160, 181
line 140
marker 141
move 157
polar 169
position 157
projection 156, 181
reset 161, 181
rotate 156
rows and columns 143
scale 156
strip 165
text 152
tic labels 150
tics 149
titles 135
zero lines 148

plot2d function 59, 123, 125
plotting commands 126
plotting functions 123

comparative analysis 125
special purpose 126

plus (+) operator 235, 239, 288
point (verb) 370
polar plot 169

polynomial 76, 205, 387
addition 77
default variable 76
indexing 77
multiplication 76
operators 206

polynomial 76, 205
polyval 77
position 157
power, raise to 93
precision (set format fixed) 114
press 367
print 55, 111
print a graphics file 180
PRINTER 26, 180
proper transfer function 228
pulldown menu 345
punctuation, MathScript 102
push 367

Q
qplot function 127
question mark (?) 113
quit 31

in batch .ms files 120

R
radio button 345
raise to a power 93
random

distribution (set) 114
seed (set seed) 114

random 385, 389
read 112
recall

@ sequences 43
ctrl sequences 42, 43

regular vector 73, 196
remove 115

break 269
419

MATRIXX 7.0
Xmath User’s Guide
commanddiary 122
path 251
sessiondiary 122
watch 270

resident
function 305, 331
process 305

resize window 369, 370
resizing window 34
restore 368
roots 77
rotate 156

S
sample period, extract with period 233
save

all 37
save 31, 54, 108, 395

PDMs as matrices 223
simulation data 223

save.xmd 31, 109
scalar 201
scale 156
scoping (in scripts) 249
scroll bars 34
search path 251
selecting

object
by clicking 60
by Shift-clicking 60

text
by clicking 371
by dragging 371

semicolon (;) 102, 113, 191
SERIES 392
series connection 231
set 112, 113

autocompile 253
break 113
buffering 113
commanddiary 113, 121
debugonerror 113
directory 28, 108, 113, 115

display 113
echo 38, 114, 118, 121
format 114
logarea 37
partition 52, 114
path 114
path 251
pause 114, 262
seed 114
sessiondiary 114, 122
timestamp 114
uiupdate 115
watch 115

Shift-Enter 51
Shift-Return 51
show 115

break 269
echo 118
logarea 38
partition(s) 95
path 251
path 251
seed 114
watch 269

simulation, general 84
single-selection list 345
SISO, definition and representation 78
slider 347
square matrix 197
start Xmath 22, 28
startup.ms 118, 119
state names, extracting 233
statement 89
state-space system 78, 79, 227, 228

decompose with abcd 233
step 234
string 71, 235, 387

breaking across lines 72
concatenation 235
converting numbers 236
data type 298
executable 117
indexing 237
matrix 235
plus (+) operator 235
420

IX

Index
size of 235
special characters 236

stringex 237
strip plots 165
symmetric matrix 198
sys*u (time domain sim) 228
system 78, 229, 230
system. See dynamic system

T
target directory 108
template.f 328
text 40

entry area 345
tics 149
time response 234
timestamp 114
tiny 98
Toeplitz matrix 200
toolbar 175
transfer function 78, 228

converted to state space before
decomposition 233

transpose (’) 73, 93
transpose, complex conjugate (*’) 93
triangular matrix 201
tril 201
triu 201

U
UCI 296, 320

building and calling 316
cleanup after termination with -clean 29, 30
functions 303
include file, required 297
LNX comparison 293
start with -call 29, 30, 294, 321
Xmath

computational engine 322
graphics engine 322

XmathExecute 308
XmathGet 309
XmathPanic 335
XmathPut 309
XmathStart 314
XmathStop 314

uiPlot function 59, 123, 124
uiPlotArea function 127
uiPlotGet function 127
unalias 116
unary operator 92, 94
UNDEFINE 253, 320
upper triangular matrix 201
user interface functions 260
user-callable interface. See UCI
USR1 signal handler 330, 335

V
variable 49, 50

comment 97
creating 49
edit box 346
environment, changing 112
find 101
load 101
lock 99, 101
name includes partition name 95
naming 90
permanent 98
print to file (print) 55, 111
save 101
show 53
size 100
temporary (ans) 99
type 100
using wildcards with 97
viewing 53

Variables window 54, 99
vector 195

creating 72
expand with [] 73, 94
logspaced 73, 197
regular 73, 196
421

MATRIXX 7.0
Xmath User’s Guide
reversing 73
transpose (’) 73, 93

void function
calling 249
declaration 248

W
watchpoint 269
whatis 105, 252
while 104, 256, 257, 386
WHO 325
who 96
wildcard 97

asterisk 97
colon 194
percent 97

window 368
close 369
default window menu 368
frame 368
iconify 368, 369
lower 369
manager 366, 367
maximize 368, 369
minimize 368, 369
move 369, 370
raise 370
resize 369, 370
restore 369
Xmath 34

Commands 35
debugger 265
Graphics 123, 171
resizing 34
Variables 99

working directory 108
WrapMatrix 298
WrapPDM 302
WrapString 299
WrapStringMatrix 299

X
X Windows 366

starting 366
XMATH 25, 373
Xmath

abort (Ctrl-\, UNIX) 30
cut and paste 41
debugger, exiting 333, 334
default key bindings 41
editing text 40
file 374
interrupt

Ctrl-Break 30
Ctrl-c 30

Mathematica interface 403, 405
quitting 31
running across the network 28
starting 28

displaying to a local host 28
from a remote host (-host) 28
with UCI 294, 321

syntax differences from MATLAB 382
tty version 29

xmath command
help

UNIX 29
Windows 30

XMATH_PRINT 26, 118, 119, 180
XMATH_STARTUP 25, 118, 119
XmathError 304, 307
XmathExecute 308
XmathGet 304, 309
xmathlib.h 297
XmathLNX.h 304, 307
XmathLoad 312
XmathMain 293, 303, 304
XmathPanic 335
XmathPut 309
XmathSave 311
XmathStart 304, 314
XmathStop 304, 314
xmodmap 375
422

IX

Index
Z
zero lines 148
zeros 385
423

MATRIXX 7.0
Xmath User’s Guide
424

	Xmath User's Guide
	Contents
	1 Introduction
	1.1� Using This Manual
	1.1.1� Document Organization
	1.1.2� Commonly-Used Nomenclature
	1.1.3� Conventions
	1.1.4� Related Publications
	1.1.5� Online Help

	1.2� Environment Variables
	1.2.1� ISIHOME
	1.2.2� XMATH
	1.2.3� XMATH_STARTUP
	1.2.4� XMATH_PRINT
	1.2.5� PRINTER

	1.3� Starting and Stopping Xmath
	1.3.1� Starting Xmath
	Starting Xmath on UNIX Systems
	Starting Xmath on Windows Systems

	1.3.2� Interrupting or Terminating Xmath
	1.3.3� Exiting Xmath
	1.3.4� Stopping and Restarting Xmath

	1.4� Licensing
	1.5� Using Xmath Windows
	1.5.1� Mouse Conventions
	1.5.2� Scroll Bars
	1.5.3� Resizing Xmath Windows
	1.5.4� Menus
	1.5.5� Meta Key

	1.6� Xmath Commands Window
	1.6.1� Menus
	1.6.2� Log Area
	1.6.3� Command Area
	Specifying Directory Pathnames and Filenames
	Entering Multiple Lines of Information
	Editing Text by Selecting, Copying, and Pasting
	Key Bindings Used in Editing Text
	Recalling Previous Commands

	1.6.4� Message Area

	1.7� Help Window

	2 JumpStart: A Tutorial
	2.1� Starting Xmath for the Tutorial
	2.2� Basic Data-Handling
	2.2.1� Creating Variables
	2.2.2� Variables and Partitions
	2.2.3� Viewing Data
	2.2.4� Saving Data
	Save Command
	Print Command

	2.2.5� Loading Data
	Load Command
	Read Command

	2.2.6� Cleanup

	2.3� Functions and Commands
	2.3.1� Function Syntax
	2.3.2� Command Syntax

	2.4� Graphics
	2.4.1� Plot(�)
	Keywords
	Graph Objects

	2.4.2� Working in the Xmath Graphics Window
	2.4.3� Using Plot and Graph Objects
	Using 2D Plotting Capabilities
	Using 3D Plotting Capabilities

	2.4.4� Using Different Plot Types
	Strip Plots
	Polar Plots
	Bar Plots
	Contour Plots

	2.4.5� Displaying Multiple Plots at Once
	2.4.6� Animating Plots
	2.4.7� Finishing the Graphics Tutorial

	2.5� Objects
	2.5.1� Strings
	2.5.2� Matrices and Vectors
	Creating Matrices and Vectors
	Matrix Index Operations
	Using Matrix Functions

	2.5.3� Polynomials
	2.5.4� Dynamic Systems
	Transfer Functions
	State-Space Systems
	Analyzing Dynamic Systems

	2.5.5� Parameter Dependent Matrices
	2.5.6� Lists

	2.6� MathScript
	2.6.1� MathScript Features
	2.6.2� Debugger Window (on UNIX Systems)

	2.7� GUI Tools
	2.8� Conclusion

	3 MathScript Basics
	3.1� MathScript Statements
	3.1.1� Assignments
	3.1.2� Rules for Names
	3.1.3� Expressions
	Logical Expressions
	Logical Expressions with Matrices

	3.1.4� Operators
	Operator Precedence

	3.2� Partitions
	3.2.1� Listing Defined Variables
	Wildcards

	3.2.2� Variable and Partition Comments
	3.2.3� Permanent Variables
	3.2.4� ans
	3.2.5� Xmath Variables Window
	Fields
	Menus

	3.3� Punctuation
	3.4� Iterative Conditional Statements
	3.5� Using Predefined Functions and Commands
	3.5.1� Command and Function Calling Syntax
	Aliases
	Input Arguments
	Keywords
	Single and Multiple Output Arguments

	3.6� Operating System Interface
	3.6.1� Manipulate and Show Current Directory

	3.7� Saving and Loading Data
	3.7.1� ASCII Versus Binary Considerations
	3.7.2� Saving Data in Non-Xmath Formats
	print
	fprintf(�)

	3.7.3� Reading Non-Xmath Data Files into Xmath

	3.8� MathScript Environment
	3.8.1� Changing Environment Settings
	3.8.2� Expanding Pathnames in MathScript Files
	3.8.3� Abbreviating Command Names (alias and unalias)

	3.9� MathScript Batch Files
	3.9.1� Executing a Batch File
	3.9.2� Echoing an Executable File
	3.9.3� startup.ms (on UNIX systems)
	3.9.4� startup.ms (on Windows Systems)
	3.9.5� I/O Redirection

	3.10� Recording an Xmath Session (Diaries)
	3.10.1� Recording Inputs (Command Diary)
	3.10.2� Recording Inputs and Outputs (Session Diary)

	4 Graphics
	4.1� Xmath Plotting Functions and Commands
	4.1.1� General Purpose Plotting Functions
	plot()
	uiPlot()
	plot2d()

	4.1.2� Comparative Analysis: plot(�) versus plot2d(�)
	4.1.3� Plotting Commands and Special Purpose Functions:
	colorind
	ERASE
	HARDCOPY
	pdmplot
	qplot
	uiPlotArea
	uiPlotGet

	4.2� Using the plot(�) Function
	4.2.1� Plot One Input
	4.2.2� Plot Two Inputs
	4.2.3� Plot Three Inputs
	4.2.4� Color as a Fourth Dimension
	4.2.5� Creating and Displaying a Graph Object

	4.3� Using Keywords with plot
	4.3.1� Labels and Legend
	4.3.2� Colors
	4.3.3� Line and Marker Specifications for Data
	4.3.4� Multiple Graphs and Graph Positioning
	4.3.5� Adding New Data to Existing Plots (keep, copy)
	4.3.6� Axis and Zero Lines
	4.3.7� Tics and Grids
	4.3.8� Free Text and Global Text Settings
	4.3.9� Axis Limits and Logarithmic Scaling
	4.3.10� Animate
	4.3.11� Placement, Scaling, and Rotation
	4.3.12� Background, Edge, and Face Settings
	4.3.13� Lighting Source Settings
	4.3.14� Reusing plot Attributes
	Hold Keyword
	Using an Alias in the Keyword String

	4.3.15� Strip Plots
	4.3.16� Bar Plots
	4.3.17� Contour Plots
	4.3.18� Polar Plots
	4.3.19� Clearing the Xmath Graphics Window

	4.4� Interactive Xmath Graphics Window
	4.4.1� Working Interactively
	4.4.2� Toolbar
	Selection Arrow
	Text Tool
	Drawing Tools
	Zoom In/Zoom Out
	Rotation Tools

	4.4.3� Menus
	File
	Edit
	View
	Options
	Font (UNIX Only)
	Point (UNIX Only)
	Tools (Windows Only)
	Windows

	4.4.4� Xmath Palette

	5 Data Objects and Operators
	5.1� Data Hierarchy
	5.1.1� Data Object Descriptions

	5.2� Matrix
	5.2.1� Matrix Concatenation
	5.2.2� Matrix Operators
	5.2.3� Matrix Indexing
	Indexing with the Colon Operator (:)

	5.2.4� Vector
	Regular Vector
	Logspaced Vector

	5.2.5� Square Matrix
	Symmetric
	Diagonal(�)
	Identity
	Toeplitz
	Hessenberg(�)
	Triangular
	Scalar

	5.3� Polynomial(�)
	5.3.1� Polynomial Operators

	5.4� Parameter-Dependent Matrix (PDM)
	5.4.1� PDM Organization
	5.4.2� Creating PDMs
	5.4.3� Default PDM Behavior
	5.4.4� PDM Channels
	5.4.5� Indexing to Extract Portions of a PDM
	PDM Dimensions
	Dependent Matrices
	Domain and Name Information

	5.4.6� Modifying PDMs
	Substitution
	Concatenation
	Converting PDMs to Matrices

	5.4.7� Using PDMs with Operators
	5.4.8� Using Functions with PDMs

	5.5� Dynamic System
	5.5.1� State-Space Systems
	5.5.2� Transfer Functions
	5.5.3� Creating Systems
	Using Operators with Dynamic Systems
	Creating Subsystems by Indexing into Dynamic Systems

	5.5.4� Functions for Manipulating Dynamic System Objects
	5.5.5� Time Response

	5.6� Strings
	5.6.1� Converting Strings and Numbers
	5.6.2� Special Characters in Strings
	5.6.3� Manipulating Substrings

	5.7� Lists
	5.8� Index Lists

	6 MathScript Programming
	6.1� Overview
	6.1.1� Creating a Sample MSF
	6.1.2� Creating a Sample MSC
	6.1.3� General Rules for MathScript Programs
	6.1.4� MathScript File Formats
	6.1.5� MathScript Programming
	Assigning Default Values
	Output Keywords
	Calling Void Functions
	Variable Scoping

	6.1.6� Creating Online Help for User-Defined MSFs and MSCs
	6.1.7� Using User-Defined MSFs and MSCs
	Search Paths
	Manipulating Search Paths
	DEFINE
	MathScript Program Compilation and Execution (.xf, .xc)

	6.2� Examples
	6.3� Programming
	6.3.1� Iterative and Conditional Looping Statements
	For
	While
	If
	Goto and Labels

	6.3.2� Object Query Functions
	exist(�)
	check(�)
	is(�)

	6.3.3� User Interface Functions
	getline(�)
	getchoice(�)
	pause(�)
	error(�)
	beep(�)

	6.3.4� Indexing Functions
	index(�)
	find(�)

	6.4� Using the Xmath Debugger
	6.4.1� Debug
	6.4.2� Debug Mode
	6.4.3� Setting, Showing, and Removing Breakpoints
	6.4.4� Setting and Removing Watchpoints
	6.4.5� Debugger Window Interface

	6.5� Advanced Topics
	6.5.1� Variable Arguments
	argn(�)
	argv(�)
	Using argn and argv

	6.5.2� Executing a Function at a Specific Directory
	6.5.3� Partition and Variable Directory Functions
	6.5.4� MathScript Command Output and Error Capture
	6.5.5� Programming for Platform Independence

	7 MathScript Objects
	7.1� MSO Overview
	7.1.1� Object Instantiation
	7.1.2� MSO File Format
	7.1.3� Using MSOs in Xmath

	7.2� Initializer Function
	7.2.1� Class Variables
	7.2.2� Nested Objects
	7.2.3� Type Declaration

	7.3� Operator Overloading
	7.4� Member Functions
	7.4.1� Sample MSO
	7.4.2� Limitations

	8 External Program Interface
	8.1� Overview
	8.1.1� LNX
	8.1.2� UCI Programs
	8.1.3� Compatibility

	8.2� externType Data Types
	8.2.1� Matrix Data Type
	8.2.2� String Data Type
	8.2.3� PDM Data Type
	8.2.4� List Data Type
	8.2.5� Null Data Type

	8.3� LNX and UCI Functions
	8.3.1� XmathMain(�) (for LNX only)
	8.3.2� XmathCommand(�)
	8.3.3� XmathDisplay(�)
	8.3.4� XmathError(�)
	8.3.5� XmathExecute(�)
	8.3.6� XmathGet(�) and XmathPut(�)
	XmathGet(�)
	XmathPut(�)

	8.3.7� Example Using XmathGet(�), XmathPut(�), and XmathExecute(�)
	8.3.8� XmathSave(�) and XmathLoad(�)
	XmathSave(�)
	XmathLoad(�)
	Standard Library Linkage
	Example of XmathSave and XmathLoad

	8.3.9� XmathStart(�) and XmathStop(�)
	XmathStart(�)
	XmathStop(�)

	8.3.10� Sample LNX Demonstrating Most Functions (myfun)

	8.4� Building and Calling LNX and UCI
	8.4.1� Building on a UNIX System
	8.4.2� Sample makefile (UNIX)
	8.4.3� Building on a Windows System
	8.4.4� Undefining an LNX
	8.4.5� Using the User-Callable Interface
	8.4.6� Building and Calling a UCI
	8.4.7� LNX Example
	8.4.8� UCI Examples
	8.4.9� Calling an LNX in Background Mode
	8.4.10� Removing an LNX Job
	8.4.11� Building an LNX to Link a FORTRAN Routine
	Calling FORTRAN from C LNX Files
	Creating FORTRAN LNX Files

	8.5� Debugging
	8.5.1� Debugging an LNX with dbx (on UNIX Systems)
	8.5.2� Debugging LNXs (on Windows systems)
	8.5.3� Debugging UCIs (on UNIX systems)
	8.5.4� Debugging UCIs (on Windows systems)

	8.6� Advanced Topics
	8.6.1� Handling an Aborted LNX
	8.6.2� Advanced Features and Notes
	8.6.3� Advanced Background LNX Function (IPCWC)

	9 Graphical User Interface
	9.1� Finding Out About the GUI
	9.1.1� GUI Tool Users
	9.1.2� GUI Developers
	9.1.3� Running the GUI Demos

	9.2� Interacting with a GUI Application
	9.2.1� Creating an Example Dialog
	9.2.2� Controlling GUI Objects

	9.3� GUI Programming Overview
	9.4� Concepts and Terminology
	9.4.1� Conceptual Example
	9.4.2� Anatomy of a GUI Tool
	9.4.3� MSC File
	9.4.4� Help File

	9.5� Xmath GUI Functions
	9.6� Tutorial
	9.6.1� Pushbutton
	9.6.2� Calculator

	9.7� Translating Version 5.X GUI Files to Version 6.X PGUI Files
	9.7.1� Overview
	9.7.2� Execution
	9.7.3� Details
	9.7.4� Limitations

	A X�Windows and Motif
	A.1� X Window System
	A.1.1� Starting X
	A.1.2� X Terminology

	A.2� Motif Window Manager
	A.2.1� Motif Frame Components
	Default Window Menu
	Frame Buttons
	Window Operations

	A.2.2� Mouse Focus and the Pointer
	A.2.3� Copying and Pasting with Motif
	A.2.4� Using Menus Without the Mouse
	A.2.5� Using a Motif File Selection Dialog

	A.3� Changing Resource Parameters
	A.3.1� Remapping Your Keyboard
	A.3.2� Sizing and Placing Windows

	B Xmath HP-GL Driver
	B.1� Supported Devices
	B.2� Setting the Aspect Ratio
	B.3� Color Pen Specifications

	C Xmath for MATLAB Users
	C.1� Syntactic Differences
	C.1.1� Continuation
	C.1.2� Output Display
	C.1.3� Matrix Punctuation
	C.1.4� String Punctuation
	C.1.5� Logical Not
	C.1.6� Comments
	C.1.7� Function Names
	C.1.8� RAND, ONES, ZEROS, and EYE
	C.1.9� IF, FOR, and WHILE
	C.1.10� Pure Imaginary Number

	C.2� Object Differences
	C.2.1� Strings
	C.2.2� Polynomials
	C.2.3� Dynamic Systems

	C.3� Interpretation Differences
	C.3.1� Environment Commands
	Creating Diaries
	Random Seeds and Distribution
	Number Formatting

	C.3.2� User-Defined Functions and Commands
	C.3.3� plot(�)
	C.3.4� Transpose Operators
	C.3.5� Convolve
	C.3.6� Series and Parallel
	C.3.7� Simulation
	C.3.8� Eval (Executable Strings)
	C.3.9� Executable Files
	C.3.10� Finding Files
	C.3.11� Debugging Files (on UNIX systems)
	C.3.12� Save and Load
	Loading In External Data (read)
	Writing Data to an External File (print, fprintf)

	C.3.13� Useful Aliases

	C.4� Comparison of Frequently Used Commands

	D Xmath to Mathematica Interface
	D.1� Overview
	D.2� Setup
	D.2.1� Setting Up the Xmath to Mathematica Interface for All Users
	D.2.2� Creating a Local LNX (Single User)

	D.3� Syntax
	D.3.1� Passing Xmath Data to Mathematica
	D.3.2� Passing Mathematica Data to Xmath

	D.4� Examples

	Index

